Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) April 8, 2020

Aqueous Contact Ion Pairs of Phosphate Groups with Na+, Ca2+ and Mg2+ – Structural Discrimination by Femtosecond Infrared Spectroscopy and Molecular Dynamics Simulations

  • Benjamin P. Fingerhut EMAIL logo , Jakob Schauss , Achintya Kundu and Thomas Elsaesser

Abstract

The extent of contact and solvent shared ion pairs of phosphate groups with Na+, Ca2+ and Mg2+ ions in aqueous environment and their relevance for the stability of polyanionic DNA and RNA structures is highly debated. Employing the asymmetric phosphate stretching vibration of dimethyl phosphate (DMP), a model system of the sugar-phosphate backbone of DNA and RNA, we present linear infrared, femtosecond infrared pump-probe and absorptive 2D-IR spectra that report on contact ion pair formation via the presence of blue shifted spectral signatures. Compared to the linear infrared spectra, the nonlinear spectra reveal contact ion pairs with increased sensitivity because the spectra accentuate differences in peak frequency, transition dipole moment strength, and excited state lifetime. The experimental results are corroborated by long time scale MD simulations, benchmarked by density functional simulations on phosphate-ion-water clusters. The microscopic interpretation reveals subtle structural differences of ion pairs formed by the phosphate group and the ions Na+, Ca2+ and Mg2+. Intricate properties of the solvation shell around the phosphate group and the ion are essential to explain the experimental observations. The present work addresses a challenging to probe topic with the help of a model system and establishes new experimental data of contact ion pair formation, thereby underlining the potential of nonlinear 2D-IR spectroscopy as an analytical probe of phosphate-ion interactions in complex biological systems.

Acknowledgements

This research has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreements Funder Id: http://dx.doi.org/10.13039/100010663, No. 833365 and Funder Id: http://dx.doi.org/10.13039/100010663, No. 802817). B. P. F. acknowledges support by the DFG within the Emmy-Noether Program (Grant No. FI 2034/1-1). We thank Janett Feickert for expert technical support.

References

1. Y. Marcus, G. Hefter, Chem. Rev. 106 (2006) 4585.10.1021/cr040087xSearch in Google Scholar PubMed

2. R. M. Fuoss, J. Am. Chem. Soc. 80 (1958) 5059.10.1021/ja01552a016Search in Google Scholar

3. D. E. Draper, RNA 10 (2004) 335.10.1261/rna.5205404Search in Google Scholar PubMed PubMed Central

4. J. Lipfert, S. Doniach, R. Das, D. Herschlag, Annu. Rev. Biochem. 83 (2014) 813.10.1146/annurev-biochem-060409-092720Search in Google Scholar PubMed PubMed Central

5. R. Buchner, Pure Appl. Chem. 80 (2009) 1239.10.1351/pac200880061239Search in Google Scholar

6. S. P. Meisburger, S. A. Pabit, L. Pollack, Biophys. J. 108 (2015) 2886.10.1016/j.bpj.2015.05.006Search in Google Scholar PubMed PubMed Central

7. M. Egli, S. Portmann, N. Usman, Biochemistry 35 (1996) 8439.10.1021/bi952932zSearch in Google Scholar PubMed

8. D. Vlieghe, J. P. Turkenburg, L. van Meervelt, Acta Crystallogr. Sect. D: Biol. Crystallogr. 55 (1999) 1495.10.1107/S0907444999007933Search in Google Scholar

9. J. Stangret, R. Savoie, Can. J. Chem. 70 (1992) 2875.10.1139/v92-367Search in Google Scholar

10. E. L. Christian, V. E. Anderson, P. R. Carey, M. E. Harris, Biochemistry 49 (2010) 2869.10.1021/bi901866uSearch in Google Scholar PubMed PubMed Central

11. Ł. Szyc, M. Yang, T. Elsaesser, J. Phys. Chem. B 114 (2010) 7951.10.1021/jp101174qSearch in Google Scholar PubMed

12. R. Costard, I. A. Heisler, T. Elsaesser, J. Phys. Chem. Lett. 5 (2014) 506.10.1021/jz402493bSearch in Google Scholar PubMed

13. R. Costard, T. Tyborski, B. P. Fingerhut, T. Elsaesser, J. Chem. Phys. 142 (2015) 212406.10.1063/1.4914152Search in Google Scholar PubMed

14. B. P. Fingerhut, R. Costard, T. Elsaesser, J. Chem. Phys. 145 (2016) 115101.10.1063/1.4962755Search in Google Scholar

15. J. Schauss, F. Dahms, B. P. Fingerhut, T. Elsaesser, J. Phys. Chem. Lett. 10 (2019) 238.10.1021/acs.jpclett.8b03568Search in Google Scholar PubMed

16. J. Schauss, A. Kundu, B. P. Fingerhut, T. Elsaesser, J. Phys. Chem. Lett. 10 (2019) 6281.10.1021/acs.jpclett.9b02157Search in Google Scholar PubMed

17. J. Florian, M. Strajbl, A. Warshel, J. Am. Chem. Soc. 12 (1998) 7959.10.1021/ja9710823Search in Google Scholar

18. S. E. Huston, P. J. Rossky, J. Phys. Chem. 93 (1989) 7888.10.1021/j100360a031Search in Google Scholar

19. A. P. Lyubartsev, A. Laaksonen, J. Phys. Chem. 100 (1996) 16410.10.1021/jp961317hSearch in Google Scholar

20. J. Šponer, G. Bussi, M. Krepl, P. Banáš, S. Bottaro, R. A. Cunha, A. Gil-Ley, G. Pinamonti, S. Poblete, P. Jurečka, N. G. Walter, M. Otyepka, Chem. Rev. 118 (2018) 4177.10.1021/acs.chemrev.7b00427Search in Google Scholar PubMed PubMed Central

21. R. Lavery, J. H. Maddocks, M. Pasi, K. Zakrzewska, K. Nucleic Acids Res. 42, (2014) 8138.10.1093/nar/gku504Search in Google Scholar PubMed PubMed Central

22. I. V. Leontyev, A. A. Stuchebrukhov, J. Chem. Theory Comput. 8 (2012) 3207.10.1021/ct300011hSearch in Google Scholar PubMed PubMed Central

23. C. Zhang, C. Lu, Q. Wang, J. W. Ponder, P. Ren, J. Chem. Theory Comput. 11 (2015) 5326.10.1021/acs.jctc.5b00562Search in Google Scholar PubMed PubMed Central

24. G. Pálinkás, T. Radnai, W. Dietz, Gy. I. Szaśz, K. Heinzinger Z. Naturforsch. 37a (1982) 1049.10.1515/zna-1982-0912Search in Google Scholar

25. S. Friesen, G. Hefter, R. Buchner, J. Phys. Chem. B, 123 (2019) 891.10.1021/acs.jpcb.8b11131Search in Google Scholar PubMed

26. N. E. Levinger, R. Costard, E. T. J. Nibbering, T. Elsaesser, J. Phys. Chem. B 115 (2011) 43, 11952.Search in Google Scholar

27. T. Siebert, B. Guchhait, Y. Liu, R. Costard, T. Elsaesser, J. Phys. Chem. B 119 (2015) 9670.10.1021/acs.jpcb.5b04499Search in Google Scholar PubMed

28. D. A. Case, I. Y. Ben-Shalom, S. R. Brozell, D. S. Cerutti, T. E. Cheatham III, V. W. D. Cruzeiro, T. A. Darden, R. E. Duke, D. Ghoreishi, M. K. Gilson, H. Gohlke, A. W. Goetz, D. Greene, R. Harris, N. Homeyer, S. Izadi, A. Kovalenko, T. Kurtzman, T. S. Lee, S. LeGrand, P. Li, C. Lin, J. Liu, T. Luchko, R. Luo, D. J. Mermelstein, K. M. Merz, Y. Miao, G. Monard, C. Nguyen, H. Nguyen, I. Omelyan, A. Onufriev, F. Pan, R. Qi, D. R. Roe, A. Roitberg, C. Sagui, S. Schott-Verdugo, J. Shen, C. L. Simmerling, J. Smith, R. Salomon-Ferrer, J. Swails, R. C. Walker, J. Wang, H. Wei, R. M. Wolf, X. Wu, L. Xiao, D. M. York, P. A. Kollman, AMBER 18, University of California, San Francisco (2018).Search in Google Scholar

29. L.-P. Wang, T. J. Martinez, V. S. Pande, J. Phys. Chem. Lett. 5 (2014) 1885.10.1021/jz500737mSearch in Google Scholar PubMed

30. I. S. Joung, T. E. Cheatham III, J. Phys. Chem. B 113 (2009) 13279.10.1021/jp902584cSearch in Google Scholar PubMed PubMed Central

31. P. Li, B. P. Roberts, D. K. Chakravorty, K. M. Merz Jr., J. Chem. Theory Comput. 9 (2013) 2733.10.1021/ct400146wSearch in Google Scholar PubMed PubMed Central

32. P. Li, K. M. Merz Jr., J. Chem. Theory Comput. 10 (2014) 289.10.1021/ct400751uSearch in Google Scholar PubMed PubMed Central

33. P. Li, L. F. Song, K. M. Merz Jr., J. Chem. Theory Comput. 11 (2015) 1645.10.1021/ct500918tSearch in Google Scholar

34. R. Salomon-Ferrer, A. W. Götz, D. Poole, S. Le Grand, R. C. Walker, J. Chem. Theory Comput. 9 (2013) 3878.10.1021/ct400314ySearch in Google Scholar

35. S. Le Grand, A. W. Götz, R. C. Walker, Comput. Phys. Commun. 184 (2013) 374.10.1016/j.cpc.2012.09.022Search in Google Scholar

36. P. Hamm, Chem. Phys. 200 (1995) 415.10.1016/0301-0104(95)00262-6Search in Google Scholar

37. M. T. Panteva, G. M. Giambasu, D. M. York, J. Comp. Chem. 36 (2015) 970.10.1002/jcc.23881Search in Google Scholar

38. M. T. Panteva, G. M. Giambaşu, D. M. York, J. Phys. Chem. B 119 (2015) 15460.10.1021/acs.jpcb.5b10423Search in Google Scholar

39. A. Bleuzen, P. A. Pittet, L. Helm, A. E. Merbach, Magn. Reson. Chem. 35 (1997) 765.10.1002/(SICI)1097-458X(199711)35:11<765::AID-OMR169>3.0.CO;2-FSearch in Google Scholar

40. R. Costard, T. Tyborski, B. P. Fingerhut, Phys. Chem. Chem. Phys. 17 (2015) 29906.10.1039/C5CP04502ASearch in Google Scholar

41. D. Laage, T. Elsaesser, J. T. Hynes, Chem. Rev. 117 (2017) 10694.10.1021/acs.chemrev.6b00765Search in Google Scholar

42. D. J. Floisand, S. A. Corcelli, J. Phys. Chem. Lett. 6 (2015) 4012.10.1021/acs.jpclett.5b01973Search in Google Scholar

43. E. Duboue-Dijon, P. E. Mason, H. E. Fischer, P. Jungwirth, J. Phys. Chem. B 122 (2018) 3296.10.1021/acs.jpcb.7b09612Search in Google Scholar PubMed

44. R. Demichelis, N. A. Garcia, P. Raiteri, R. I. Malini, C. L. Freeman, J. H. Harding, J. D. Gale, J. Phys. Chem. B 122 (2018) 1471.10.1021/acs.jpcb.7b10697Search in Google Scholar PubMed

45. I. M. Zeron, J. L. F. Abascal, C. Vega, J. Chem. Phys. 151 (2019) 134504.10.1063/1.5121392Search in Google Scholar PubMed

46. M. Kumar, T. Simonson, G. Ohanessian, C. Clavaguera, ChemPhysChem 16 (2015) 658.10.1002/cphc.201402685Search in Google Scholar PubMed

Received: 2020-01-13
Accepted: 2020-03-06
Published Online: 2020-04-08
Published in Print: 2020-08-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.1515/zpch-2020-1614/html
Scroll to top button