Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) April 18, 2019

Dependence of UO2 surface morphology on processing history within a single synthetic route

  • Erik C. Abbott , Alexandria Brenkmann , Craig Galbraith , Joshua Ong , Ian J. Schwerdt , Brent D. Albrecht , Tolga Tasdizen and Luther W. McDonald IV EMAIL logo
From the journal Radiochimica Acta

Abstract

This study aims to determine forensic signatures for processing history of UO2 based on modifications in intermediate materials within the uranyl peroxide route. Uranyl peroxide was calcined to multiple intermediate U-oxides including Am-UO3, α-UO3, and α-U3O8 during the production of UO2. The intermediate U-oxides were then reduced to α-UO2 via hydrogen reduction under identical conditions. Powder X-ray diffractometry (p-XRD) and X-ray photoelectron spectroscopy (XPS) were used to analyze powders of the intermediate U-oxides and resulting UO2 to evaluate the phase and purity of the freshly synthesized materials. All U-oxides were also analyzed via scanning electron microscopy (SEM) to determine the morphology of the freshly prepared powders. The microscopy images were subsequently analyzed using the Morphological Analysis for Materials (MAMA) version 2.1 software to quantitatively compare differences in the morphology of UO2 from each intermediate U-oxide. In addition, the microscopy images were analyzed using a machine learning model which was trained based on a VGG 16 architecture. Results show no differences in the XRD or XPS spectra of the UO2 produced from each intermediate. However, results from both the segmentation and machine learning proved that the morphology was quantifiably different. In addition, the morphology of UO2 was very similar, if not identical, to the intermediate material from which it was prepared, thus making quantitative morphological analysis a reliable forensic signature of processing history.

Award Identifier / Grant number: 2015-DN-077-ARI092

Award Identifier / Grant number: HDTRA1-16-1-0026

Award Identifier / Grant number: 2016-DN-077-ARI102

Funding statement: This synthesis of uranyl peroxide and its calcination products along with their subsequent analysis by p-XRD, XPS, and SEM were supported by the U.S. Department of Homeland Security, Domestic Nuclear Detection Office, Funder Id: http://dx.doi.org/10.13039/100000180, under Grant Award no. 2015-DN-077-ARI092. The Defense Threat Reduction Agency, Funder Id: http://dx.doi.org/10.13039/100000774, under Grant Award no. HDTRA1-16-1-0026 supported the quantitative image analysis via MAMA. The machine learning analysis was supported by the U.S. Department of Homeland Security, Domestic Nuclear Detection Office, Funder Id: http://dx.doi.org/10.13039/100000180, under Grant Award no. 2016-DN-077-ARI102. This work made use of University of Utah Shared facilities of the Surface Analysis and Nanoscale Imaging Group sponsored by the College of Engineering, Health Sciences Center, Office of the Vice President for Research, and the Utah Science Technology and Research (USTAR) Initiative of the State of Utah. This work made use of the Materials Characterization Lab at the University of Utah.

References

1. IAEA: Identification of High Confidence Nuclear Forensics Signatures. IAEA-TECDOC-1820 (2017).Search in Google Scholar

2. Wallenius, M., Mayer, K., Ray, I.: Nuclear forensic investigations: two case studies. Forensic Sci. Int. 156, 55 (2006).10.1016/j.forsciint.2004.12.029Search in Google Scholar PubMed

3. Olsen, A. M., Richards, B., Schwerdt, I., Heffernan, S., Lusk, R., Smith, B., Jurrus, E., Ruggiero, C., McDonald IV, L. W.: Quantifying morphological features of α-U3O8 with image analysis for nuclear forensics. Anal. Chem. 89, 3177 (2017).10.1021/acs.analchem.6b05020Search in Google Scholar PubMed

4. Schwerdt, I. J., Olsen, A., Lusk, R., Heffernan, S., Klosterman, M., Collins, B., Martinson, S., Kirkham, T., McDonald IV, L. W.: Nuclear forensics investigation of morphological signatures in the thermal decomposition of uranyl peroxide. Talanta 176, 284 (2018).10.1016/j.talanta.2017.08.020Search in Google Scholar PubMed

5. Tamasi, A. L., Cash, L. J., Mullen, W. T., Ross, A. R., Ruggiero, C. E., Scott, B. L., Wagner, G. L., Walensky, J. R., Zerkle, S. A., Wilkerson, M. P.: Comparison of morphologies of a uranyl peroxide precursor and calcination products. J. Radioanal. Nucl. Chem. 309, 827 (2016).10.1007/s10967-016-4692-xSearch in Google Scholar

6. Cordfunke, E. H. P., Van Der Giessen, A. A.: Particle properties and sintering behaviour of uranium dioxide. J. Nucl. Mater. 24, 141 (1967).10.1016/0022-3115(67)90002-5Search in Google Scholar

7. Ainscough, J. B., Oldfield, B. W.: Effect of ammonium diuranate precipitation conditions on the characteristics and sintering behaviour of uranium dioxide. J. Appl. Chem. 12, 418 (1962).10.1002/jctb.5010120907Search in Google Scholar

8. Pan, Y.-M., Ma, C.-B., Hsu, N.-N.: The conversion of UO2 via ammonium uranyl carbonate: study of precipitation, chemical variation and powder properties. J. Nucl. Mater. 99, 135 (1981).10.1016/0022-3115(81)90182-3Search in Google Scholar

9. Doi, H., Ito, T.: Significance of physical state of starting precipitate in growth of uranium dioxide particles. J. Nucl. Mater. 11, 94 (1964).10.1016/0022-3115(64)90124-2Search in Google Scholar

10. Choi, C. S., Park, J. H., Kim, E. H., Shin, H. S., Chang, I. S.: The influence of AUC powder characteristics on UO2 pellets. J. Nucl. Mater. 153, 148 (1988).10.1016/0022-3115(88)90206-1Search in Google Scholar

11. Kim, T.-J., Jeong, K.-C., Park, J.-H., Chang, I.-S., Choi, C.-S.: Crystallization characteristics of ammonium uranyl carbonate (AUC) in ammonium carbonate solutions. J. Nucl. Mater. 209, 306 (1994).10.1016/0022-3115(94)90268-2Search in Google Scholar

12. Yang, X., Gao, J., Yong, W., Chang, X.: Low-temperature sintering process for UO2 pellets in partially-oxidative atmosphere. Trans. Nonferrous Met. Soc. China. 18, 171 (2008).10.1016/S1003-6326(08)60031-XSearch in Google Scholar

13. Nenoff, T. M., Jacobs, B. W., Robinson, D. B., Provencio, P. P., Huang, J., Ferreira, S., Hanson, D. J.: Synthesis and low temperature in situ sintering of uranium oxide nanoparticles. Chem. Mater. 23, 5185 (2011).10.1021/cm2020669Search in Google Scholar

14. Marajofsky, A., Perez, L., Celora, J.: On the dependence of characteristics of powders on the AUC process parameters. J. Nucl. Mater. 178, 143 (1991).10.1016/0022-3115(91)90379-LSearch in Google Scholar

15. Song, K. W., Kim, K. S., Kang, K. W., Jung, Y. H.: Grain size control of UO2 pellets by adding heat-treated U3O8 particles to UO2 powder. J. Nucl. Mater. 317, 204 (2003).10.1016/S0022-3115(03)00080-1Search in Google Scholar

16. Song, K. W., Kim, K. S., Kim, Y. M., Kang, K. W., Jung, Y. H.: Reduction of the open porosity of UO2 pellets through pore structure control. J. Nucl. Mater. 279, 253 (2000).10.1016/S0022-3115(00)00004-0Search in Google Scholar

17. Assmann, H., Dörr, W., Peehs, M.: Control of UO2 microstructure by oxidative sintering. J. Nucl. Mater. 140, 1 (1986).10.1016/0022-3115(86)90189-3Search in Google Scholar

18. Hung, N. T., Thuan, L. B., Van Khoai, D., Lee, J.-Y., Jyothi, R. K.: Modeling conversion of ammonium diuranate (ADU) into uranium dioxide (UO2) powder. J. Nucl. Mater. 479, 483 (2016).10.1016/j.jnucmat.2016.07.045Search in Google Scholar

19. Tamasi, A. L., Boland, K. S., Czerwinski, K., Ellis, J. K., Kozimor, S. A., Martin, R. L., Pugmire, A. L., Reilly, D., Scott, B. L., Sutton, A. D.: Oxidation and hydration of U3O8 materials following controlled exposure to temperature and humidity. Anal. Chem. 87, 4210 (2015).10.1021/ac504105tSearch in Google Scholar PubMed

20. Sweet, L. E., Henager, C. H., Hu, S. Y., Johnson, T. J., Meier, D. E., Peper, S. M., Schwantes, J. M.: Investigation of Uranium Polymorphs. Pacific Northwest National Laboratory (PNNL), Richland, WA, USA (2011).10.2172/1062522Search in Google Scholar

21. Cordfunke, E. H. P., Van Der Giessen, A. A.: Pseudomorphic decomposition of uranium peroxide into UO3. J. Inorg. Nucl. Chem. 25, 553 (1963).10.1016/0022-1902(63)80240-7Search in Google Scholar

22. Cordfunke, E. H. P.: The Chemistry of Uranium: Including its Applications in Nuclear Technology. Elsevier Science & Technology, Amsterdam, The Netherlands; Barking, Essex, England; New York, NY (1970).Search in Google Scholar

23. Pijolat, M., Brun, C., Valdivieso, F., Soustelle, M.: Reduction of uranium oxide U3O8 to UO2 by hydrogen. Solid State Ionics. 101, 931 (1997).10.1016/S0167-2738(97)00385-8Search in Google Scholar

24. Ruggiero, C. E., Bloch, J. J.: Morphological Analysis for Material Attribution, Version 2.1 (2016).Search in Google Scholar

25. S.I. Inc: JMP Pro Version 13.1.0 (2016).Search in Google Scholar

26. Libbrecht, M. W., Noble, W. S.: Machine learning applications in genetics and genomics. Nat. Rev. Genet. 16, 321 (2015).10.1038/nrg3920Search in Google Scholar PubMed PubMed Central

27. Schwerdt, I. J., Brenkmann, A., Martinson, S., Albrecht, B. D., Heffernan, S., Klosterman, M. R., Kirkham, T., Tasdizen, T., McDonald IV, L. W.: Nuclear proliferomics: a new field of study to identify signatures of nuclear materials as demonstrated on alpha-UO3. Talanta 186, 433 (2018).10.1016/j.talanta.2018.04.092Search in Google Scholar PubMed

28. The MathWorks, I.: MATLAB (2017).Search in Google Scholar

29. Foundation Python Software: Python (2018).Search in Google Scholar

30. Guo, X., Wu, D., Xu, H., Burns, P. C., Navrotsky, A.: Thermodynamic studies of studtite thermal decomposition pathways via amorphous intermediates UO3, U2O7, and UO4. J. Nucl. Mater. 478, 158 (2016).10.1016/j.jnucmat.2016.06.014Search in Google Scholar

31. Ilton, E. S., Bagus, P. S.: XPS determination of uranium oxidation states. Surf. Interface Anal. 43, 1549 (2011).10.1002/sia.3836Search in Google Scholar

32. Tamasi, A. L., Cash, L. J., Eley, C., Porter, R. B., Pugmire, D. L., Ross, A. R., Ruggiero, C. E., Tandon, L., Wagner, G. L., Walensky, J. R.: A lexicon for consistent description of material images for nuclear forensics. J. Radioanal. Nucl. Chem. 307, 1611 (2016).10.1007/s10967-015-4455-0Search in Google Scholar

33. Loopstra, B. O.: The structure of β-U3O8. Acta Crystallogr. B: Struct. Crystallogr. Cryst. Chem. 26, 656 (1970).10.1107/S0567740870002935Search in Google Scholar

34. Winslow, G. H.: Thermomechanical properties of real materials–the thermal expansions of UO2 and THO2. High Temp. Sci. 3, 361 (1971).Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/ract-2018-3065).


Received: 2018-10-01
Accepted: 2019-02-21
Published Online: 2019-04-18
Published in Print: 2019-11-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2018-3065/html
Scroll to top button