Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 22, 2015

In-vitro efficacy of indocyanine green-mediated photodynamic therapy in combination with cisplatin or etoposide

In-Vitro-Wirksamkeit der ICG-vermittelten photodynamischen Therapie in Kombination mit Cisplatin oder Etoposid
  • Kamola Kasimova , Lothar Lilge EMAIL logo and Brian C. Wilson

Abstract:

Localizing the cytotoxic effects of cancer therapies to only affect the tumor cells is a goal in oncology, to maximize efficacy and minimize treatment-related morbidities. Most effective chemotherapeutic drugs have significant side effects due to off-target toxicity. By comparison, photodynamic therapy (PDT) is a localized therapy without significant systemic toxicity but may have limited efficacy. Hence, combining PDT with chemotherapy was investigated to determine if the anti-tumor effect of the latter could be enhanced. PDT using indocyanine green (ICG), activated by near-infrared light, was investigated in lung tumor cells in vitro in combination with cisplatin or etoposide (VP-16). The combination of cisplatin and ICG-PDT had significant concentration-dependent dark toxicity, with little additional cell kill after light exposure. Conversely, combination therapy comprising 5 μm VP-16, 50 μm ICG and 50 J/cm2 808-nm radiant exposure resulted in ~10% clonogenic cell survival compared to ~80% cell survival with either treatment alone. This potentially synergistic gain was achieved only when both treatments were given at the same time or when VP-16 was administered 4 h prior to PDT. VP-16 given 4 h post PDT did not show any added benefit over PDT alone.

Zusammenfassung:

Ein Ziel der Onkologie besteht darin, die zytotoxische Wirkung von Krebstherapien genau auf die Tumorzellen zu fokussieren, um so die Wirksamkeit der Behandlung zu maximieren und gleichzeitig die behandlungsbedingte Morbidität zu verringern. Gerade die wirksamsten Chemotherapeutika haben jedoch erhebliche Nebenwirkungen durch ihre Off-Target-Toxizität. Im Vergleich dazu ist die photodynamische Therapie (PDT) eine lokalisierte Therapie ohne signifikante systemische Toxizität, die jedoch eine begrenzte Wirksamkeit haben kann. Die vorliegende Studie untersucht daher inwiefern die Anti-Tumor-Wirkung einer Chemotherapie durch eine Kombination aus PDT und Chemotherapie verbessert werden kann. Durchgeführt wurden In-Vitro-Versuche an Lungentumorzellen, die mittels Indocyaningrün (ICG)-vermittelter PDT in Kombination mit Cisplatin oder Etoposid (VP-16) behandelt wurden. Das ICG wurde durch Licht im nahen Infrarot aktiviert. Die Kombination aus Cisplatin und ICG-PDT zeigte eine signifikante konzentrationsabhängige Dunkeltoxizität, mit geringer zusätzlicher Zellabtötung nach der Belichtung. Umgekehrt führte eine Kombinationstherapie aus 5 μm VP-16, 50 μm ICG und 50 J/cm2 Laserbestrahlung mit 808 nm zu ~10% klonogenem Zellüberleben im Vergleich zu ~80% bei alleiniger PDT-Behandlung. Diese potentiell synergistische Verstärkung wurde nur erreicht, wenn beide Behandlungen gleichzeitig erfolgten oder wenn VP-16 ca. 4 Stunden vor der PDT verabreicht wurde. VP-16 gegeben 4 h nach der PDT hatte hingegen keinen zusätzlichen Vorteil gegenüber einer alleinigen PDT-Behandlung.


Corresponding author: Lothar Lilge, The Princess Margaret Cancer Centre, University Health Network; and Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Research Tower 15th Floor, 101 College Street, Toronto, Ontario M5G 1L7, Canada, e-mail:

Acknowledgments

This work was supported by an Innovation grant from the Canadian Cancer Society Research Institute (Grant number: ‘2012-701479’). Additional funding was provided by the Ontario Ministry of Health and Long Term Care. The authors would like to thank Dr. Qing-Bin Lu at University of Waterloo for stimulating these studies.

  1. Conflict of interest statement: Authors state no conflict of interest. All authors have read the journal’s Publication Ethics and Publication Malpractice Statement available at the journal’s website and hereby confirm that they comply with all its parts applicable to the present scientific work.

References

[1] Ferlay J, Autier P, Boniol M, Heanue M, Colombet M, Boyle P. Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol 2007;18(3):581–92.10.1093/annonc/mdl498Search in Google Scholar PubMed

[2] Orvig C, Abrams MJ. Medicinal inorganic chemistry: introduction. Chem Rev 1999;99(9):2201–4.10.1021/cr980419wSearch in Google Scholar PubMed

[3] Wang D, Lippard SJ. Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 2005;4(4):307–20.10.1038/nrd1691Search in Google Scholar PubMed

[4] Fuertes MA, Alonso C, Pérez JM. Biochemical modulation of Cisplatin mechanisms of action: enhancement of antitumor activity and circumvention of drug resistance. Chem Rev 2003;103(3):645–62.10.1021/cr020010dSearch in Google Scholar PubMed

[5] Wang CR, Lu QB. Molecular mechanism of the DNA sequence selectivity of 5-halo-2’-deoxyuridines as potential radiosensitizers. J Am Chem Soc 2010;132(42):14710–3.10.1021/ja102883aSearch in Google Scholar PubMed

[6] Wang CR, Nguyen J, Lu QB. Bond breaks of nucleotides by dissociative electron transfer of nonequilibrium prehydrated electrons: a new molecular mechanism for reductive DNA damage. J Am Chem Soc 2009;131(32):11320–2.10.1021/ja902675gSearch in Google Scholar PubMed

[7] Reedijk J. New clues for platinum antitumor chemistry: kinetically controlled metal binding to DNA. Proc Natl Acad Sci USA 2003;100(7):3611–6.10.1073/pnas.0737293100Search in Google Scholar PubMed PubMed Central

[8] Lu QB, Kalantari S, Wang CR. Electron transfer reaction mechanism of cisplatin with DNA at the molecular level. Mol Pharm 2007;4(4):624–8.10.1021/mp070040aSearch in Google Scholar PubMed

[9] Sinkule JA. Etoposide: a semisynthetic epipodophyllotoxin. Chemistry, pharmacology, pharmacokinetics, adverse effects and use as an antineoplastic agent. Pharmacotherapy 1984;4(2):61–73.10.1002/j.1875-9114.1984.tb03318.xSearch in Google Scholar PubMed

[10] Litwiniec A, Gackowska L, Helmin-Basa A, Zuryń A, Grzanka A. Low-dose etoposide-treatment induces endoreplication and cell death accompanied by cytoskeletal alterations in A549 cells: does the response involve senescence? The possible role of vimentin. Cancer Cell Int 2013;13(1):9.10.1186/1475-2867-13-9Search in Google Scholar PubMed PubMed Central

[11] Kaufmann SH. Cell death induced by topoisomerase-targeted drugs: more questions than answers. Biochim Biophys Acta 1998;1400(1–3):195–211.10.1016/S0167-4781(98)00136-5Search in Google Scholar

[12] Crescenzi E, Varriale L, Iovino M, Chiaviello A, Veneziani BM, Palumbo G. Photodynamic therapy with indocyanine green complements and enhances low-dose cisplatin cytotoxicity in MCF-7 breast cancer cells. Mol Cancer Ther 2004;3(5): 537–44.10.1158/1535-7163.537.3.5Search in Google Scholar

[13] Nonaka M, Ikeda H, Inokuchi T. Effect of combined photodynamic and chemotherapeutic treatment on lymphoma cells in vitro. Cancer Lett 2002;184(2):171–8.10.1016/S0304-3835(02)00208-2Search in Google Scholar

[14] Kobayashi K, Frohlich H, Usami N, Takakura K, Le Sech C. Enhancement of X-ray-induced breaks in DNA bound to molecules containing platinum: a possible application to hadrontherapy. Radiat Res 2002;157(1):32–7.10.1667/0033-7587(2002)157[0032:EOXRIB]2.0.CO;2Search in Google Scholar

[15] Engel E, Schraml R, Maisch T, Kobuch K, König B, Szeimies RM, Hillenkamp J, Bäumler W, Vasold R. Light-induced decomposition of indocyanine green. Invest Ophthalmol Vis Sci 2008;49(5):1777–83.10.1167/iovs.07-0911Search in Google Scholar

[16] Wilson BC. Potential applications of photodynamic therapy in regenerative medicine. J Craniofac Surg 2003;14(3):278–83.10.1097/00001665-200305000-00004Search in Google Scholar

[17] Zeng H, Korbelik M, McLean DI, MacAulay C, Lui H. Monitoring photoproduct formation and photobleaching by fluorescence spectroscopy has the potential to improve PDT dosimetry with a verteporfin-like photosensitizer. Photochem Photobiol 2002;75(4):398–405.10.1562/0031-8655(2002)075<0398:MPFAPB>2.0.CO;2Search in Google Scholar

[18] Fickweiler S, Szeimies RM, Bäumler W, Steinbach P, Karrer S, Goetz AE, Abels C, Hofstädter F, Landthaler M. Indocyanine green: intracellular uptake and phototherapeutic effects in vitro. J Photochem Photobiol B 1997;38(2–3):178–83.10.1016/S1011-1344(96)07453-2Search in Google Scholar

[19] Abels C, Karrer S, Bäumler W, Goetz AE, Landthaler M, Szeimies RM. Indocyanine green and laser light for the treatment of AIDS-associated cutaneous Kaposi’s sarcoma. Br J Cancer 1998;77(6):1021–4.10.1038/bjc.1998.168Search in Google Scholar

[20] Reindl S, Penzkofer A, Gong S, Landthaler M, Szeimies RM, Abels C, Baumler W. Quantum yield of triplet formation for indocyanine green. J Photochem Photobiol A Chem 1997;105(1):65–8.10.1016/S1010-6030(96)04584-4Search in Google Scholar

[21] Niedre M, Patterson MS, Wilson BC. Direct near-infrared luminescence detection of singlet oxygen generated by photodynamic therapy in cells in vitro and tissues in vivo. Photochem Photobiol 2002;75(4):382–91.10.1562/0031-8655(2002)0750382DNILDO2.0.CO2Search in Google Scholar

[22] Niedre MJ, Secord AJ, Patterson MS, Wilson BC. In vitro tests of the validity of singlet oxygen luminescence measurements as a dose metric in photodynamic therapy. Cancer Res 2003;63(22):7986–94.Search in Google Scholar

[23] Lu QB. Molecular reaction mechanisms of combination treatments of low-dose cisplatin with radiotherapy and photodynamic therapy. J Med Chem 2007;50(11):2601–4.10.1021/jm061416bSearch in Google Scholar

[24] Luo T, Yu J, Nguyen J, Wang CR, Bristow RG, Jaffray DA, Zhou XZ, Lu KP, Lu QB. Electron transfer-based combination therapy of cisplatin with tetramethyl-p-phenylenediamine for ovarian, cervical, and lung cancers. Proc Natl Acad Sci USA 2012;109(26):10175–80.10.1073/pnas.1203451109Search in Google Scholar

[25] Boncler M, Różalski M, Krajewska U, Podsędek A, Watala C. Comparison of PrestoBlue and MTT assays of cellular viability in the assessment of anti-proliferative effects of plant extracts on human endothelial cells. J Pharmacol Toxicol Methods 2014;69(1):9–16.10.1016/j.vascn.2013.09.003Search in Google Scholar

[26] Yang X. Clonogenic assay to test cancer therapies. Bio-protocol 2012;2(10):1–3.Search in Google Scholar

[27] Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 1995;184(1):39–51.10.1016/0022-1759(95)00072-ISearch in Google Scholar

[28] Vermes I, Haanen C, Reutelingsperger C. Flow cytometry of apoptotic cell death. J Immunol Methods 2000;243(1–2):167–90.10.1016/S0022-1759(00)00233-7Search in Google Scholar

[29] Hayata Y, Kato H, Konaka C, Ono J, Takizawa N. Hematoporphyrin derivative and laser photoradiation in the treatment of lung cancer. Chest 1982;81(3):269–77.10.1378/chest.81.3.269Search in Google Scholar

[30] Ackroyd R, Kelty C, Brown N, Reed M. The history of photodetection and photodynamic therapy. Photochem Photobiol 2001;74(5):656–69.10.1562/0031-8655(2001)074<0656:THOPAP>2.0.CO;2Search in Google Scholar

[31] Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J. Photodynamic therapy of cancer: an update. CA Cancer J Clin 2011;61(4):250–81.10.3322/caac.20114Search in Google Scholar

[32] Brown SB, Brown EA, Walker I. The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol 2004;5(8):497–508.10.1016/S1470-2045(04)01529-3Search in Google Scholar

[33] Detty MR, Gibson SL, Wagner SJ. Current clinical and preclinical photosensitizers for use in photodynamic therapy. J Med Chem 2004;47(16):3897–915.10.1021/jm040074bSearch in Google Scholar

[34] Diamond I, Granelli SG, McDonagh AF, Nielsen S, Wilson CB, Jaenicke R. Photodynamic therapy of malignant tumours. Lancet 1972;2(7788):1175–7.10.1016/S0140-6736(72)92596-2Search in Google Scholar

[35] Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q. Photodynamic therapy. J Natl Cancer Inst 1998;90(12):889–905.10.1093/jnci/90.12.889Search in Google Scholar

[36] Wilson BC, Patterson MS. The physics, biophysics and technology of photodynamic therapy. Phys Med Biol 2008;53(9):R61–109.10.1088/0031-9155/53/9/R01Search in Google Scholar

[37] Bäumler W, Abels C, Karrer S, Weiss T, Messmann H, Landthaler M, Szeimies RM. Photo-oxidative killing of human colonic cancer cells using indocyanine green and infrared light. Br J Cancer 1999;80(3–4):360–3.10.1038/sj.bjc.6690363Search in Google Scholar

[38] Morton CA, Brown SB, Collins S, Ibbotson S, Jenkinson H, Kurwa H, Langmack K, McKenna K, Moseley H, Pearse AD, Stringer M, Taylor DK, Wong G, Rhodes LE. Guidelines for topical photodynamic therapy: report of a workshop of the British Photodermatology Group. Br J Dermatol 2002;146(4):552–67.10.1046/j.1365-2133.2002.04719.xSearch in Google Scholar

[39] Schmidt-Erfurth U, Hasan T. Mechanisms of action of photodynamic therapy with verteporfin for the treatment of age-related macular degeneration. Surv Ophthalmol 2000;45(3):195–214.10.1016/S0039-6257(00)00158-2Search in Google Scholar

[40] Hamblin MR, Hasan T. Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci 2004;3(5):436–50.10.1039/b311900aSearch in Google Scholar PubMed PubMed Central

[41] Abels C, Fickweiler S, Weiderer P, Bäumler W, Hofstädter F, Landthaler M, Szeimies RM. Indocyanine green (ICG) and laser irradiation induce photooxidation. Arch Dermatol Res 2000;292(8):404–11.10.1007/s004030000147Search in Google Scholar PubMed

[42] Moan J, Berg K. The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem Photobiol 1991;53(4):549–53.10.1111/j.1751-1097.1991.tb03669.xSearch in Google Scholar PubMed

[43] Kassák P, Sikurová L, Kvasnicka P, Bryszewska M. The response of Na+/K+ -ATPase of human erythrocytes to green laser light treatment. Physiol Res 2006;55(2):189–94.10.33549/physiolres.930711Search in Google Scholar PubMed

[44] Gratz H, Penzkofer A, Abels C, Szeimies RM, Landthaler M, Bäumler W. Photo-isomerisation, triplet formation, and photo-degradation dynamics of indocyanine green solutions. J Photochem Photobiol A Chem 1999;128(1–3):101–9.10.1016/S1010-6030(99)00174-4Search in Google Scholar

[45] del Carmen MG, Rizvi I, Chang Y, Moor AC, Oliva E, Sherwood M, Pogue B, Hasan T. Synergism of epidermal growth factor receptor-targeted immunotherapy with photodynamic treatment of ovarian cancer in vivo. J Natl Cancer Inst 2005;97(20):1516–24.10.1093/jnci/dji314Search in Google Scholar PubMed

Received: 2015-4-28
Revised: 2015-6-19
Accepted: 2015-7-3
Published Online: 2015-8-22
Published in Print: 2015-11-1

©2015 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/plm-2015-0015/html
Scroll to top button