Skip to content
BY 4.0 license Open Access Published by De Gruyter (O) January 12, 2019

Crystal structure of 2-(bis(3,5-dimethylphenyl) ((methyldiphenylsilyl)oxy)methyl) pyrrolidine, C34H39NOSi

  • Kimberleigh B. Govender , Marivel Samipillai , Thavendran Govender , Hendrik G. Kruger and Tricia Naicker EMAIL logo

Abstract

C34H39NOSi, triclinic, P1̅ (no. 2), a = 10.0901(2) Å, b = 11.5016(2) Å, c = 14.4098(3) Å, α = 69.207(1)°, β = 86.555(2)°, γ = 65.579(3)°, V = 1416.10(6) Å3, Z = 2, Rgt(F) = 0.0463, wRref(F2) = 0.1200, T = 100(2) K.

CCDC no.: 1887917

Table 1:

Data collection and handling.

Crystal:Colourless block
Size:0.37 × 0.24 × 0.13 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:0.11 mm−1
Diffractometer, scan mode:Bruker APEX-II CCD, φ and ω
θmax, completeness:28.8°, 99%
N(hkl)measured, N(hkl)unique, Rint:39154, 7216, 0.020
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 6613
N(param)refined:382
Programs:COSMO [1], Bruker [2, 3] , Olex2 [4], ORTEP-3 [5], SHELX [6, 7]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Si10.24984(4)0.26137(4)0.31410(3)0.01343(9)
O10.16889(10)0.24233(10)0.22865(7)0.01643(19)
C10.24404(14)0.43638(14)0.25001(10)0.0156(2)
C20.20539(16)0.50797(15)0.14742(11)0.0200(3)
H20.1695890.4721500.1096400.024*
C30.21842(17)0.63098(16)0.09954(12)0.0252(3)
H30.1923360.6777780.0296780.030*
C40.26938(17)0.68493(15)0.15382(13)0.0270(3)
H40.2804050.7676170.1209790.032*
C50.30431(17)0.61811(16)0.25621(13)0.0260(3)
H50.3364120.6563530.2939260.031*
C60.29216(16)0.49487(15)0.30343(11)0.0204(3)
H60.3170450.4493530.3734730.024*
C70.14952(15)0.25769(14)0.42785(10)0.0166(3)
C80.20076(17)0.14263(16)0.51584(11)0.0250(3)
H80.2871690.0650950.5172110.030*
C90.12885(19)0.13837(18)0.60153(12)0.0306(4)
H90.1655710.0583420.6602090.037*
C100.00405(18)0.25057(18)0.60121(12)0.0276(3)
H10−0.0452160.2483820.6596770.033*
C11−0.04872(18)0.36595(18)0.51539(13)0.0298(3)
H11−0.1344820.4434490.5149780.036*
C120.02278(17)0.36966(16)0.42941(12)0.0240(3)
H12−0.0152870.4496920.3708230.029*
C130.44423(15)0.13588(15)0.35412(11)0.0189(3)
H13A0.4485140.0444800.3915040.028*
H13B0.4888010.1629200.3967330.028*
H13C0.4976790.1342070.2951870.028*
C140.17844(14)0.13327(13)0.19905(10)0.0140(2)
C150.02273(14)0.14610(13)0.18403(9)0.0142(2)
C16−0.09958(15)0.25652(14)0.19151(10)0.0167(3)
H16−0.0872870.3241580.2087230.020*
C17−0.24061(15)0.26902(15)0.17393(10)0.0191(3)
C18−0.25634(15)0.16895(15)0.14886(10)0.0201(3)
H18−0.3517980.1768780.1367990.024*
C19−0.13552(16)0.05747(15)0.14103(10)0.0189(3)
C200.00387(15)0.04694(14)0.15917(10)0.0168(3)
H200.087310−0.0289740.1545240.020*
C21−0.37319(17)0.39093(17)0.17909(14)0.0295(3)
H21A−0.3428920.4418120.2087820.044*
H21B−0.4413810.3594190.2201900.044*
H21C−0.4214800.4508170.1116510.044*
C22−0.15428(19)−0.05095(18)0.11456(13)0.0285(3)
H22A−0.257165−0.0190080.0917800.043*
H22B−0.124437−0.1355680.1734760.043*
H22C−0.093407−0.0686810.0612240.043*
C230.26844(15)−0.00592(14)0.28037(10)0.0157(3)
C240.21040(15)−0.03995(15)0.37124(10)0.0188(3)
H240.1158980.0208860.3790180.023*
C250.28773(17)−0.16105(16)0.45087(11)0.0224(3)
C260.42515(18)−0.24967(15)0.43735(12)0.0248(3)
H260.479157−0.3326040.4910520.030*
C270.48530(17)−0.21987(16)0.34728(12)0.0246(3)
C280.40518(16)−0.09761(14)0.26884(11)0.0200(3)
H280.444621−0.0766850.2066540.024*
C290.2244(2)−0.19454(19)0.54926(12)0.0313(4)
H29A0.244719−0.1492630.5892140.047*
H29B0.268831−0.2939350.5853150.047*
H29C0.118332−0.1621760.5371820.047*
C300.6348(2)−0.31696(19)0.33413(15)0.0400(4)
H30A0.710207−0.3083120.3675390.060*
H30B0.647374−0.2942860.2628550.060*
H30C0.643965−0.4112750.3634730.060*
C310.23985(14)0.15513(14)0.09626(10)0.0171(3)
H31a0.2486810.0789920.0745050.020*
H31Ab0.2646820.0715670.0796910.020*
N1Aa0.3830(5)0.1621(5)0.0937(3)0.0159(8)
H1Ac0.405(3)0.1771(17)0.1460(9)0.019*
C32Aa0.1337(8)0.2918(7)0.0192(5)0.0245(16)
H32Aa0.0604400.277980−0.0131470.029*
H32Ba0.0816210.3586030.0518150.029*
C33Aa0.2251(6)0.3433(6)−0.0569(4)0.0305(12)
H33Aa0.2253590.316806−0.1151950.037*
H33Ba0.1859120.444432−0.0801300.037*
C34Ad0.3696(8)0.2812(8)−0.0077(5)0.0397(16)
H34Ad0.3911110.3508310.0054080.048*
H34Bd0.4416000.244181−0.0511620.048*
N1Bb0.1379(7)0.2769(6)0.0135(4)0.0133(13)
H1Bc0.070(2)0.262(3)−0.011(2)0.016*
C32Bb0.3764(10)0.1884(5)0.0866(6)0.0226(12)
H32Cb0.3608860.2624340.1116690.027*
H32Db0.4652340.1062690.1237120.027*
C33Bb0.2300(6)0.3191(6)−0.0646(4)0.0222(12)
H33Cb0.2062000.417671−0.0833730.027*
H33Db0.2141110.302540−0.1250050.027*
C34Be0.3878(3)0.2312(3)−0.01772(18)0.0254(5)
H34Ce0.4334030.151320−0.0387990.030*
H34De0.4466830.285265−0.0367450.030*
  1. aOccupancy: 0.556(12), bOccupancy: 0.444(12), cOccupancy: 0.5, dOccupancy: 0.3, eOccupancy: 0.7.

The crystal structure is shown in the figure. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Source of material

A mixture of (R)-α,α-bis(3,5-dimethylphenyl)-2-pyrrolidinemethanol (100 mg, 1.0 eq), DIEA (2.0 eq) and DMAP (0.2 eq) was stirred in anhydrous DCM (1.6 mL) at room temperature. Chloro(methyl)diphenylsilane (1.2 eq) was added and the reaction mixture was refluxed for 24 h. The reaction was quenched with water and the resulting mixture was extracted twice with DCM. The combined organic layers were then washed once with brine, dried with Na2SO4 and concentrated. The crude material was then purified by column chromatography (20% EtOAc/n-hexane, Rf = 0.2) to yield the title compound as an off-white solid (yield 56.2 mg, 34.4%). The product was dissolved in acetonitrile after the addition of heat and subsequent evaporation yielded colourless crystals suitable for X-ray analysis. m.p. 106 − 108 °C. 1H-NMR (CDCl3, 400 MHz) : δ [ppm] 0.25 (3H, s), 0.92 – 0.98 (1H, m), 1.17 – 1.21 (1H, m), 1.47 – 1.53 (2H, m), 1.66 – 1.73 (1H, m), 2.25 (12H, s), 2.60 – 2.65 (1H, m), 2.77 – 2.81 (1H, m), 3.99 – 4.02 (1H, t, J = 4.52 Hz), 6.86 – 6.89 (2H, d, J = 11.8 Hz), 6.99 (2H, s), 7.10 (2H, s), 7.32 – 7.37 (6H, m), 7.54 (4H, s).

Experimental details

All hydrogen atoms attached to carbon were placed in idealised positions and refined using the riding model with Uiso values set to 1.2 or 1.5 times of those of their parent atoms and C—H distances constrained ranging from 0.95 Å to 1.00 Å. Hydrogen atoms attached to nitrogen were added manually and their positions refined subject to restraints.

Comment

Diarylprolinol silyl ethers have become synonymous with organocatalysis. Developed independently by Jørgensen [8] and Hayashi [9], diarylprolinol silyl ethers have shown to be successful as both enamine and iminium activators [10]. They have been applied to a vast array of reactions [11], [12], [13] and have led to the development of many derivatives [14], [15], [16]. Our group has shown interest in the field of organocatalysis and its applications [17] and we are now developing novel diarylprolinol silyl ethers to be incorporated in asymmetric organocatalytic reactions. We have here described the crystal structure of the title compound.

The crystal structure of the title compound contains one molecule in the asymmetric unit and the pyrrolidine moiety is disordered over two positions. The phenyl rings attached to the Si-atom of the title compound are slightly twisted with the torsion angles of 104.66(13)° for C8—C7—Si1—O1 and −11.66(13)° for C2—C1—Si1—O1. Similarly the two dimethylphenyl moieties attached to the quaternary carbon (C14) of the molecule and are also slightly twisted with the torsion angles of −112.05(14)° for C28—C23—C14—O1 and 4.99(17)° for C16—C15—C14—O1. C—H⋯π interactions are found to play a crucial role to interconnect the adjacent molecules in the crystal lattice.

References

1. COSMO, V1.61. Bruker AXS Inc., Madison, WI (2009).Search in Google Scholar

2. Bruker. SAINT-Plus, SADABS. Bruker AXS Inc., Madison, WI, USA (2008).Search in Google Scholar

3. Bruker. APEX2, XPREP. Bruker AXS Inc., Madison, WI, USA (2008).Search in Google Scholar

4. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H.: OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42 (2009) 339–341.10.1107/S0021889808042726Search in Google Scholar

5. ORTEP-3 for Windows with a Graphical User Interface (GUI). J. Appl. Crystallogr. 45 (2012) 849–854.10.1107/S0021889812029111Search in Google Scholar

6. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.10.1107/S2053229614024218Search in Google Scholar PubMed PubMed Central

7. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Search in Google Scholar PubMed

8. Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jørgensen, K. A.: Enantioselective organocatalyzed α-sulfenylation of aldehydes. Angew. Chem. Int. Ed. 44 (2005) 794–797.10.1002/anie.200462101Search in Google Scholar PubMed

9. Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji, M.: Diphenylprolinol silyl ethers as efficient organocatalysts for the asymmetric Michael reaction of aldehydes and nitroalkenes. Angew. Chem. Int. Ed. 44 (2005) 4212–4215.10.1002/anie.200500599Search in Google Scholar PubMed

10. Bertelsen, S.; Jørgensen, K. A.: Organocatalysis – after the gold rush. Chem. Soc. Rev. 38 (2009) 2178–2189.10.1039/b903816gSearch in Google Scholar PubMed

11. Jensen, K. L.; Dickmeiss, G.; Jiang, H.; Albrecht, L.; Jørgensen, K. A.: The diaryl prolinol silyl ether system: a general organocatalyst. Acc. Chem. Res. 45 (2012) 248–264.10.1021/ar200149wSearch in Google Scholar PubMed

12. Klier, L.; Tur, F.; Poulsen, P. H.; Jørgensen, K. A.: Asymmetric cycloaddition reactions catalysed by diarylprolinol silyl ethers. Chem. Soc. Rev. 46 (2017) 1080–1102.10.1039/C6CS00713ASearch in Google Scholar

13. Xu, L.-W.; Li, L.; Shi, Z.-H.: Asymmetric synthesis with silicon-based bulky amino organocatalysts. Adv. Synth. Catal. 352 (2010) 243–279.10.1002/adsc.200900797Search in Google Scholar

14. Donslund, B. S.; Johansen, T. K.; Poulsen, P. H.; Halskov, K. S.; Jørgensen, K. A.: The diarylprolinol silyl ethers: ten years after. Angew. Chem. Int. Ed. 54 (2015) 13860–13874.10.1002/anie.201503920Search in Google Scholar PubMed

15. Lombardo, M.; Montroni, E.; Quintavalla, A.; Trombini, C.: A new family of conformationally constrained bicyclic diarylprolinol dilyl ethers as organocatalysts. Adv. Synth. Catal. 354 (2012) 3428–3434.10.1002/adsc.201200922Search in Google Scholar

16. Marques-Lopez, P. H.; Raquel, E.: Diarylprolinol derivatives in organocatalysis from another point of view: structural aspects. Curr. Org. Chem. 15 (2011) 2311–2327.10.2174/138527211796150705Search in Google Scholar

17. Cele, Z. E. D.; Arvidsson, P. I.; Kruger, H. G.; Govender, T.; Naicker, T.: Applied enatioselective aminocatalysis: α-heteroatom functionalization reactions on the carbapenem (β-lactam antibiotic) core. Eur. J. Org. Chem. 2015 (2015) 638–646.10.1002/ejoc.201403238Search in Google Scholar

Received: 2018-10-11
Accepted: 2018-12-29
Published Online: 2019-01-12
Published in Print: 2019-03-26

©2019 Kimberleigh B. Govender et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 Public License.

Downloaded on 1.5.2024 from https://www.degruyter.com/document/doi/10.1515/ncrs-2018-0422/html
Scroll to top button