Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter June 11, 2016

Copercolating Networks: An Approach for Realizing High-Performance Transparent Conductors using Multicomponent Nanostructured Networks

  • Suprem R. Das , Sajia Sadeque , Changwook Jeong , Ruiyi Chen , Muhammad A. Alam EMAIL logo and David B. Janes
From the journal Nanophotonics

Abstract

Although transparent conductive oxides such as indium tin oxide (ITO) are widely employed as transparent conducting electrodes (TCEs) for applications such as touch screens and displays, new nanostructured TCEs are of interest for future applications, including emerging transparent and flexible electronics. A number of twodimensional networks of nanostructured elements have been reported, including metallic nanowire networks consisting of silver nanowires, metallic carbon nanotubes (m-CNTs), copper nanowires or gold nanowires, and metallic mesh structures. In these single-component systems, it has generally been difficult to achieve sheet resistances that are comparable to ITO at a given broadband optical transparency. A relatively new third category of TCEs consisting of networks of 1D-1D and 1D-2D nanocomposites (such as silver nanowires and CNTs, silver nanowires and polycrystalline graphene, silver nanowires and reduced graphene oxide) have demonstrated TCE performance comparable to, or better than, ITO. In such hybrid networks, copercolation between the two components can lead to relatively low sheet resistances at nanowire densities corresponding to high optical transmittance. This review provides an overview of reported hybrid networks, including a comparison of the performance regimes achievable with those of ITO and single-component nanostructured networks. The performance is compared to that expected from bulk thin films and analyzed in terms of the copercolation model. In addition, performance characteristics relevant for flexible and transparent applications are discussed. The new TCEs are promising, but significant work must be done to ensure earth abundance, stability, and reliability so that they can eventually replace traditional ITO-based transparent conductors.

References

[1] Lewis B. G., Paine D. C. Applications and processing of transparent conducting oxides. MRS. Bulletin. 2000; 25 (8): 22-27.Search in Google Scholar

[2] Kilic C., Zunger A. Origins of coexistence of conductivity and transparency. Phys. Rev. Lett. 2002; 88 (9): 095501.Search in Google Scholar

[3] Liu H., Avrutin V., Izyumskaya N., Ozgur U., Morkoc H. Transparent conducting oxides for electrode applications in light emitting and absorbing devices. Superlattices and Microstructures 2010; 48 (5): 458-484.10.1016/j.spmi.2010.08.011Search in Google Scholar

[4] Chopra K. L., Major S., Pandya D. K. Transparent conductors - A status review. Thin Solid Films 1983; 102 (1): 1-46.10.1016/0040-6090(83)90256-0Search in Google Scholar

[5] Gordon R.G. Criteria for choosing transparent conductors. MRS. Bulletin 2000; 25 (8): 52-57.10.1557/mrs2000.151Search in Google Scholar

[6] De Volder M. F. L., Tawfick S. H., Baughman R. H., Hart A. J. Carbon Nanotubes: Present and Future commercial applications. Science 2013; 339: 535-539.10.1126/science.1222453Search in Google Scholar PubMed

[7] Roy K., Byunghoo J., Than A. R. Integrated systems in the More-than-Moore era: designing low-cost energy-efficient systems using heterogeneous components. 23rd IEEE Int. Conf. on VLSI Design Bangalore 2010; pp. 464-469; DOI 10.1109/VLSI.Design.2010.8410.1109/VLSI.Design.2010.84Search in Google Scholar

[8] Hu L., Kim H. S., Lee J. Y., Peumans P., Cui Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 2010; 4: 2955-2963.10.1021/nn1005232Search in Google Scholar PubMed

[9] Wu Z., Chen Z., Du X., Logan J. M., Sippel J., Nicolou M., Kamaras K., Reynolds J. R., Tanner D. B., Hebard A. F., Rinzler A. G. Transparent, conductive carbon nanotube films. Science 2004; 305: 1273-1276.10.1126/science.1101243Search in Google Scholar PubMed

[10] Zhang D., Wang R., Wen M., Weng D., Cui X., Sun J., Li H., Lu Y. Synthesis of ultralong copper nanowires for high-performance transparent electrodes. J. Am. Chem. Soc. 2012; 134: 14283-14286.Search in Google Scholar

[11] Lyons P. E., De S., Elias J., Schamel M., Philippe L., Bellew A. T., Boland J. J., Coleman J. N. High-performance transparent conductors from networks of gold nanowires. J. Phys. Chem. Lett. 2011; 2: 3058-3062.Search in Google Scholar

[12] Van de Groep J., Spinelli P., Polman A. Transparent conducting silver nanowire networks. Nano Lett. 2012; 12: 3138-3144.10.1021/nl301045aSearch in Google Scholar PubMed

[13] Tokuno T., Nogi M., Jiu J., Suganuma K. Hybrid transparent electrodes of silver nanowires and carbon nanotubes: a low temperature solution process. Nanoscale Research Letters 2012; 7: 281.10.1186/1556-276X-7-281Search in Google Scholar PubMed PubMed Central

[14] Kholmanov I. N., Magnuson C. W., Aliev A. E., Li H., Zhang B., Suk J. W., Zhang L. L., Peng E., Mousavi S. H., Khanikaev A. B., Piner R., Shvets G., Ruoff R. S. Improved electrical conductivity of graphene films integrated with metal nanowires. Nano Lett. 2012; 12: 5679-5683.10.1021/nl302870xSearch in Google Scholar PubMed

[15] Ahn Y., Jeong Y., Lee Y. Improved Thermal oxidation stability of solution-processable silver nanowire transparent electrode by reduced graphene oxide. ACS Appl. Mater. Interfaces 2012; 4: 6410-6414 (2012).10.1021/am301913wSearch in Google Scholar

[16] Ishibashi S., Higuchi Y., Ota Y., Nakamura K. Low resistivity indium-tin oxide transparent conductive films. II. Effect of sputtering voltage on electrical property of films. J. Vac. Sci. Technol. A 1990; 8: 1403-1406.Search in Google Scholar

[17] TangW., Cameron D. C. Aluminum-doped zinc oxide transparent conductors deposited by sol-gel process. Thin Solid Films 1994; 238: 83-87.10.1016/0040-6090(94)90653-XSearch in Google Scholar

[18] Madaria A. R., Kumar A., Ishikawa F. N., Zhou C. Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using dry transfer technique. Nano Res. 2010; 3: 564-573.10.1007/s12274-010-0017-5Search in Google Scholar

[19] Scardaci V., Coull R., Lyons P. E., Rickard D., Coleman J. N. Spray deposition of highly transparent, low-resistance networks of silver nanowires over large areas. Small 2011; 7: 2621-2628.10.1002/smll.201100647Search in Google Scholar PubMed

[20] Chen R., Das S. R., Jeong C., Khan M. R., Janes D. B., Alam M. A. Co-percolating graphene-wrapped silver nanowire network for high performance, highly stable, transparent conducting electrodes. Adv. Funct. Mater. 2013; 23 (41): 5150-5158.Search in Google Scholar

[21] Lee M.-S., Lee K., Kim S.-Y., Lee H., Park J., Choi K.-H., Kim H.- K., Kim D.-G., Lee D.-Y., Nam S., Park J.-U. High-Performance, Transparent, and Stretchable Electrodes Using Graphene-Metal Nanowire Hybrid Structures. Nano Lett. 2013; 13(6): 2814-2821.10.1021/nl401070pSearch in Google Scholar PubMed

[22] Hagendorfer H. et al., Highly transparent and conductive ZnO:Al thin films from a low temperature aqueous solution approach. Adv. Mater. 2014; 26: 632-636Search in Google Scholar

[23] Kim H., Auyeung R. C. Y., Pique A. Transparent conducting Fdoped SnO2 thin films grown by pulsed laser deposition. Thin Solid Films 2008; 516: 5052-5056.10.1016/j.tsf.2007.11.079Search in Google Scholar

[24] Lee J.-Y., Connor S. T., Cui Y., Peumans P. Solution-processed metal nanowire mesh transparent electrodes. Nano letters. 2008; 8: 689-692.10.1021/nl073296gSearch in Google Scholar PubMed

[25] Benoy M. D., Mohammed E. M., Suresh Babu M., Binu P. J., Pradeep B. Thickness dependence of the properties of indium tin oxide (ITO) FILMS prepared by activated reactive evaporation. Brazilian Journal of Physics 2009; 39: 629.10.1590/S0103-97332009000600003Search in Google Scholar

[26] Andres L. J., Menendez M. F., Gomez D., Martinez A. L., Bristow N., Kettle J. P., Menendez A., Ruiz B. Rapid synthesis of ultralong silver nanowires for tailor-made transparent conductive electrodes: proof of concept in organic solar cells. Nanotechnology 2015; 26 (26): 265201.10.1088/0957-4484/26/26/265201Search in Google Scholar PubMed

[27] De S., Higgins T. M., Lyons P. E., Doherty E. M., Nirmalraj P. N., Blau W. J., Boland J. J., Coleman J. N. Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios. ACS Nano 2009; 3 (7): 1767-1774.10.1021/nn900348cSearch in Google Scholar PubMed

[28] Geng H.-Z., Kim K. K., So K. P., Lee Y. S., Chang Y., Lee Y. H. Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. J. Am. Chem. Soc. 2007; 129 (25): 7758-7759.Search in Google Scholar

[29] Deng B., Hsu P.-C., Chen G., Chandrashekhar B. N., Lioa L., Ayitimuda Z., Wu J., Guo Y., Lin L., Zhou Y., Aisijiang M., Xie Q., Cui Y., Liu Z., Peng H. Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes. Nano Lett. 2015; 15 (6): 4206-4213.10.1021/acs.nanolett.5b01531Search in Google Scholar PubMed

[30] Chandrashekar B. N., Deng B., Smitha A. S., Chen Y., Tan C., Zhang H., Peng H. Liu Z. Roll-to-roll green transfer of CVD graphene onto plastic for a transparent and flexible triboelectric nanogenerator. Adv. Mater. 2015; 27 (35): 5210-5216.Search in Google Scholar

[31] Fang J., Das S. R., Prokopeva L. J., Shalaev V. M., Janes D. B., Kildishev A. V. Time-domain modeling of silver nanowires-graphene transparent conducting electrodes. Proc. SPIE 8806, Metamaterials: Fundamentals and Applications VI, 880601 (September 11, 2013); DOI: 10.1117/12.2026871.10.1117/12.2026871Search in Google Scholar

[32] Jain V. K., Kulshreshtha A. P. Indium-tin-oxide transparent conducting coatings on silicon solar cells and their “figure of merit”. Sol. Energy Mater. Sol. Cells 1981; 4 (2): 151-158.Search in Google Scholar

[33] Schroder D. K. Semiconductor material and device characterization, 3rd Edition, ISBN: 978-0-471-73906-7, June 2015, Wiley- IEEE Press.Search in Google Scholar

[34] Cao Q., Kim H.-S., Pimparkar N., Kulkarni J. P., Wang C., Shim M., Roy K., Alam M. A., Rogers J. A. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 2008; 454 (7203): 495-500.10.1038/nature07110Search in Google Scholar PubMed

[35] Balberg I., Binenbaum N. Computer study of the percolation threshold in a two-dimensional anisotropic system of conducting sticks. Physical Review B 1983; 28 (7): 3799.10.1103/PhysRevB.28.3799Search in Google Scholar

[36] Li J., Zhang S.-L. Finite-size scaling in stick percolation. Physical Review E 2009; 80 (4): 040104.10.1103/PhysRevE.80.040104Search in Google Scholar PubMed

[37] Stauffer D., Aharony A. Introduction to Percolation Theory, Revised 2nd Ed. Taylor and Francise, 1994.Search in Google Scholar

[38] Pimparkar N., Cao Q., Kumar S., Murthy J. Y., Rogers J., Alam M. A. Current-Voltage Characteristics of Long-Channel Nanobundle Thin-Film Transistors: A “Bottom-Up” Perspective. Electron Device Letters, IEEE 2007; 28 (2): 157-160.10.1109/LED.2006.889219Search in Google Scholar

[39] Pimparkar N., Kocabas C., Kang S. J., Rogers J., Alam M. A. Limits of performance gain of aligned CNT over randomized network: Theoretical predictions and experimental validation. Electron Device Letters, IEEE 2007; 28 (7): 593-595.10.1109/LED.2007.898256Search in Google Scholar

[40] Kumar S., Murthy J. Y., Alam M. A. Percolating conduction in finite nanotube networks. Physical review letters 2005; 95 (6): 066802.10.1103/PhysRevLett.95.066802Search in Google Scholar PubMed

[41] Nair P. R., Alam M. A. Dimensionally frustrated diffusion towards fractal adsorbers. Physical review letters 2007; 99 (25): 256101.10.1103/PhysRevLett.99.256101Search in Google Scholar PubMed

[42] Go J., Sysoev V. V., Kolmakov A., Pimparkar N., Alam M. A. A novel model for (percolating) nanonet chemical sensors for microarray-based E-nose applications, IEEE International Electron Devices Meeting (IEDM 2009). 2009.10.1109/IEDM.2009.5424266Search in Google Scholar

[43] Ternon C., Serre P., Lebrun J. M., Brouzet V., Legallais M., David S., Luciani T., Pascal C., Baron T., Missiaen, J. M. Low Temperature Processing to Form Oxidation Insensitive Electrical Contact at Silicon Nanowire/Nanowire Junctions. Advanced Electronic Materials 2015; 1 (10): DOI: 10.1002/aelm.20150017210.1002/aelm.201500172Search in Google Scholar

[44] Pimparkar N., AlamM. A. A “bottom-up” redefinition formobility and the effect of poor tube-tube contact on the performance of CNT nanonet thin-film transistors. Electron Device Letters, IEEE 2008; 29 (9): 1037-1039.10.1109/LED.2008.2001259Search in Google Scholar

[45] Spechler J. A., Arnold C. B. Direct-write pulsed laser processed silver nanowire networks for transparent conducting electrodes. Appl. Phys. A 2012; DOI: 10.1007/s00339-012-6958-710.1007/s00339-012-6958-7Search in Google Scholar

[46] Garnett E. C., CaiW., Cha J. J.,Mahmood F., Connor S. T., Christoforo M. G., Cui Y., McGehee M. D., Brongersma M. L. Self-limited plasmonic welding of silver nanowire junctions. Nature Materials 2012; 11:241-249.10.1038/nmat3238Search in Google Scholar PubMed

[47] Gruner G. Carbon nanotube films for transparent and plastic electronics. J. Mater. Chem. 2006; 16 (35): 3533-3539.10.1039/b603821mSearch in Google Scholar

[48] Yazyev O. V., Louie S. G. Electronic transport in polycrystalline graphene. Nature Materials 2010; 9: 806-809.10.1038/nmat2830Search in Google Scholar PubMed

[49] Yu Q. et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapor deposition. Nature Materials 2011; 10:443-449.10.1038/nmat3010Search in Google Scholar PubMed

[50] Chen R., Das S. R., Jeong C., Janes D. B., Alam M. A. Exclusive electrical determination of high-resistance grain-boundaries in poly-graphene. IEEE Proc. 70th Annual Device research conference (DRC) 2012: 57-58; DOI: 10.1109/DRC.2012.625703410.1109/DRC.2012.6257034Search in Google Scholar

[51] Eda G., Fanchini G., Chhowalla M. Large Area Ultrathin films of reduced graphene oxide as a transparent and flexible electrode material. Nature Nanotechnology 2008; 3: 270-274.10.1038/nnano.2008.83Search in Google Scholar PubMed

[52] Jeong C., Nair P., Khan M., Lundstrom M., Alam M. A. Prospects for Nanowire-Doped Polycrystalline Graphene Films for Ultratransparent, Highly Conductive Electrodes. Nano Lett. 2011; 11: 5020-502510.1021/nl203041nSearch in Google Scholar PubMed

[53] Kholmanov I. N., Domingues S. H., Chou H., Wang X., Tan C., Kim J.-Y., Li H., Piner R., Zarbin A. J. G., Ruoff R. S. Reduced Graphene Oxide/Copper Nanowire Hybrid Films as High- Performance Transparent Electrodes. ACS Nano 2013; 7: 1811-1816.10.1021/nn3060175Search in Google Scholar PubMed

[54] Chen J., Bi H., Sun S., Tang Y., Zhao W., Lin T., Wan D., Huang F., Zhou X., Xie X., Jiang M. Highly Conductive and Flexible Paper of 1D Silver-Nanowire-Doped Graphene. ACS Appl. Mater. Interfaces 2013; 5: 1408-1413.Search in Google Scholar

[55] Liang J., Li L., Tong K., Ren Z., HuW., Niu X., Chen Y. Pei Q. Silver Nanowire Percolation Network Soldered with Graphene Oxide at Room Temperature and Its Application for Fully Stretchable Polymer Light-Emitting Diodes. ACS Nano 2014; 8: 1590-1600.10.1021/nn405887kSearch in Google Scholar PubMed

[56] Lee D., Lee H., Ahn Y., Jeong Y., Lee D.-Y., Lee Y. Highly stable and flexible silver nanowire-graphene hybrid transparent conducting electrodes for emerging optoelectronic devices. Nanoscale 2013; 5: 7750-7755.10.1039/c3nr02320fSearch in Google Scholar PubMed

[57] Liu Y., Chang Q., Huang L. Transparent, flexible conducting graphene hybrid films with a subpercolating network of silver nanowires. J. Mater. Chem. C 2013; 1: 2970-2974.Search in Google Scholar

[58] Xu S., Man B., Jiang S., Liu M., Yang C., Chen C., Zhang C. Graphene-silver nanowire hybrid films as electrodes for transparent and flexible loudspeakers. CrystEngComm, 2014; 16: 3532-3539.10.1039/c3ce42656dSearch in Google Scholar

[59] Seo T. H., Kim B. K., Shin G., Lee C., Kim M. J., Kim H., Suh E. -K. Graphene-silver nanowire hybrid structure as a transparent and current spreading electrode in ultraviolet light emitting diodes. Appl. Phys. Lett. 2013; 103: 051105.Search in Google Scholar

[60] Yin P. T., Kim T. -H., Choi J. -W., Lee K. -B. Prospects for graphene-nanoparticle-based hybrid sensors. Phys.Chem. Chem. Phys.2013; 15: 12785-12799.Search in Google Scholar

[61] Maize K., Das S. R., Sadeque S., Mohammed A. M. S., Shakouri A., Janes D. B., Alam M. A. Super-Joule heating in graphene and silver nanowire network. Appl. Phys. Lett. 2015; 106: 143104.Search in Google Scholar

[62] Kumar S., Pimparkar N., Murthy J. Y., Alam M. A. Self-consistent electrothermal analysis of nanotube network transistors. Journal of Applied Physics 2011; 109 (1): 014315.10.1063/1.3524209Search in Google Scholar

[63] Kumar S., Alam M. A., Murthy J. Y. Effect of percolation on thermal transport in nanotube composites. Applied Physics Letters 2007; 90 (10): 104105.10.1063/1.2712428Search in Google Scholar

[64] Celle C., Mayousse C., Moreau E., Basti H., Carella A., Simonato J.-P. Highly flexible transparent film heaters based on random networks of silver nanowires. Nano Res. 2012; 5 (6): 427-433.10.1007/s12274-012-0225-2Search in Google Scholar

[65] Lee S. M., Lee J. H., Bak S., Lee K., Li Y., Lee H. Hybridwindshieldglass heater for commercial vehicles fabricated via enhanced electrostatic interactions among a substrate, silver nanowires, and an over-coating layer. Nano Res. 2015; 8 (6): 1882-1892.10.1007/s12274-014-0696-4Search in Google Scholar

[66] Mehta R., Chugh S., Chen Z. Enhanced electrical and thermal conduction in graphene-encapsulated copper nanowires. Nano Lett. 2015; 15 (3): 2024-2030.10.1021/nl504889tSearch in Google Scholar PubMed

[67] Li Y., Cui P.,Wang L., Lee H., Lee K., Lee H. Highly bendable, conductive, and transparent film by an enhanced adhesion of silver nanowires. ACS Appl. Mater. Interfaces 2013; 5: 9155-9160.Search in Google Scholar

[68] Neves A. I. S., Bointon T. H., Melo L. V., Russo S., de Schrijiver I., Craciun M. F., Alves H. Transparent conductive graphene textile fibers. Scientific Reports 2015; 5: Article number: 9866; DOI: 10.1038/srep0986610.1038/srep09866Search in Google Scholar PubMed PubMed Central

[69] Chen S. et al. Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano 2011; 5 (2): 1321-1327.10.1021/nn103028dSearch in Google Scholar PubMed

[70] Bohm S. Graphene against corrosion. Nature Nanotechnology 2014; 9: 741-742.10.1038/nnano.2014.220Search in Google Scholar PubMed

[71] Zhang W., Lee S., McNear K. L., Chung T. F., Lee S., Lee K., Crist S. A., Ratliff T. L., Zhong Z., Chen Y. P., Yang C. Use of graphene as protection film in biological environments. Scientific Reports 2014; 4, Article number: 4097; DOI: 10.1038/srep0409710.1038/srep04097Search in Google Scholar PubMed PubMed Central

[72] Goli P., Ning H., Li X., Lu C. Y., Novoselov K. S., Baladin A. A. Thermal properties of graphene-copper-graphene heterogeneous films. Nano Lett. 2014; 14 (3): 1497-1503.10.1021/nl404719nSearch in Google Scholar PubMed

[73] Das S. R., Nian Q., Saei M., Jin S., Back D., Kumar P., Janes D. B., Alam M. A., Cheng G. J. Single-layer graphene as a barrier layer for intense UV laser-induced damages for silver nanowire network. ACS Nano 2015; DOI: 10.1021/acsnano.5b0462810.1021/acsnano.5b04628Search in Google Scholar PubMed

[74] Zhu B., Ren G., Gao Y., Yang Y., Lian Y., Jian S. Graphenecoated tapered nanowire infrared probe: a comparison with metal coated probes. Optics Express 2014; 22 (20): 24096-24103.10.1364/OE.22.024096Search in Google Scholar PubMed

[75] Bae S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology 2010; 5: 574-578. 10.1038/nnano.2010.132Search in Google Scholar PubMed

[76] Angmo D., Andersen T. R., Bentzen J. J., Helgesen M., Sondergaard R. R., Jorgensen M., Carle J. E., Bundgaard E., Krebs F. C. Roll-to-roll printed silver nanowire semitransparent electrodes for fully ambient solution-processed tandem polymer solar cells. Adv. Funct. Mater. 2015; 25 (28): 4539-4547.Search in Google Scholar

[77] Gupta M. P., Behnam A., Lian F., Estrada D., Pop E., Kumar S. High field breakdown characteristics of carbon nanotube thin film transistors. Nanotechnology 2013; 24: 405204.10.1088/0957-4484/24/40/405204Search in Google Scholar PubMed

[78] Gordon J. Structures: Or Why Things Don’t Fall Down (2003). Da Capo Press, 2nd Edition Search in Google Scholar

Received: 2015-10-20
Accepted: 2016-3-21
Published Online: 2016-6-11
Published in Print: 2016-6-1

© 2016

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Downloaded on 11.5.2024 from https://www.degruyter.com/document/doi/10.1515/nanoph-2016-0036/html
Scroll to top button