Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 7, 2016

Use of difference-based methods to explore statistical and mathematical model discrepancy in inverse problems

  • H. Thomas Banks EMAIL logo , Jared Catenacci and Shuhua Hu

Abstract

Normalized differences of several adjacent observations, referred to as pseudo-measurement errors in this paper, are used in so-called difference-based estimation methods as building blocks for the variance estimate of measurement errors. Numerical results demonstrate that pseudo-measurement errors can be used to serve the role of measurement errors. Based on this information, we propose the use of pseudo-measurement errors to determine an appropriate statistical model and then to subsequently investigate whether there is a mathematical model misspecification or error. We also propose to use the information provided by pseudo-measurement errors to quantify uncertainty in parameter estimation by bootstrapping methods. A number of numerical examples are given to illustrate the effectiveness of these proposed methods.

MSC 2010: 34A55; 62H12; 62F40

Award Identifier / Grant number: AFOSR FA9550-12-1-0188

Funding statement: This research was supported in part by the Air Force Office of Scientific Research under grant number AFOSR FA9550-12-1-0188, and in part by the US Department of Education Graduate Assistance in Areas of National Need (GAANN) under grant number P200A120047.

The authors wish to gratefully acknowledge the efforts of two referees of an earlier version of this manuscript whose questions and suggestions resulted in significant improvements of the current manuscript.

References

[1] Adoteye K., Banks H. T., Flores K. B. and LeBlanc G. A., Estimation of time-varying mortality rates using continuous models for Daphnia Magna, Appl. Math. Lett. 44 (2015), 12–16; CRSC-TR14-17, Center for Research in Scientific Computation, North Carolina State University, 2014. 10.1016/j.aml.2014.12.014Search in Google Scholar

[2] Arendt P. D., Apley D. W. and Chen W., Quantification of model uncertainty: Calibration, model discrepancy and identifiability, J. Mech. Design 134 (2012), Article ID 100908. 10.1115/1.4007390Search in Google Scholar

[3] Banks H. T., Banks J. E., Murad N., Rosenheim J. A. and Tillman K., Modelling pesticide treatment effects on Lygus hesperus in cotton fields, CRSC-TR15-09, Center for Research in Scientific Computation, North Carolina State University, Raleigh, 2015. 10.1007/978-3-319-55795-3_8Search in Google Scholar

[4] Banks H. T., Banks J. E., Rosenheim J. and Tillman K., Modeling populations of Lygus Hesperus on cotton fields in the San Joaquin Valley of California: The importance of statistical and mathematical model choice, J. Biol. Dyn. (2016), 10.1080/17513758.2016.1143533; CRSC-TR15-04, Center for Research in Scientific Computation, North Carolina State University, Raleigh, 2015. 10.1080/17513758.2016.1143533Search in Google Scholar PubMed

[5] Banks H. T., Baraldi R., Cross K., Flores K., McChesney C., Poag L. and Thorpe E., Uncertainty quantification in modeling HIV viral mechanics, Math. Biosciences Engr. 12 (2015), 937–964; CRSC-TR13-16, North Carolina State University, Raleigh, 2013. 10.3934/mbe.2015.12.937Search in Google Scholar PubMed

[6] Banks H. T., Catenacci J. and Hu S., Asymptotic properties of probability measure estimators in a nonparametric model, SIAM/ASA J. Uncertainty Quantification 3 (2015), no. 1, 417–433. 10.1137/140972639Search in Google Scholar

[7] Banks H. T., Doumic M., Kruse C., Prigent S. and Rezaei H., Information content in data sets for a nucleated-polymerization model, J. Biol. Dyn. 9 (2015), no. 1, 172–197; CRSC-TR14-15, North Carolina State University, Raleigh, 2014. 10.1080/17513758.2015.1050465Search in Google Scholar PubMed PubMed Central

[8] Banks H. T., Hu S. and Thompson W. C., Modeling and Inverse Problems in the Presence of Uncertainty, Chapman & Hall/CRC Press, Boca Raton, 2014. 10.1201/b16760Search in Google Scholar

[9] Banks H. T., Kapraun D. F., Link K. G., Thompson W. C., Peligero C., Argilaguet J. and Meyerhans A., Analysis of variability in estimates of cell proliferation parameters for cyton-based models using CFSE-based flow cytometry data, J. Inverse Ill-Posed Probl. 23 (2014), 135–171; CRSC-TR13-14, North Carolina State University, Raleigh, 2013. 10.1515/jiip-2013-0065Search in Google Scholar

[10] Kapraun H. T. Banks D. F., Peligero C., Argilaguet J. and Meyerhans A., Evaluating the importance of mitotic asymmetry in cyton-based models for CFSE-based flow cytometry data, Int. J. Pure Appl. Math. 100 (2015), no. 1, 131–156; CRSC-TR15-02, North Carolina State University, Raleigh, 2015. Search in Google Scholar

[11] Banks H. T., Kapraun D. F., Thompson W. C., Peligero C., Argilaguet J. and Meyerhans A., A novel statistical analysis and interpretation of flow cytometry data, J. Biol. Dyn. 7 (2013), 96–132; CRSC-TR12-23, North Carolina State University, Raleigh, 2013. 10.1080/17513758.2013.812753Search in Google Scholar PubMed PubMed Central

[12] Banks H. T. and Tran H. T., Mathematical and Experimental Modeling of Physical and Biological Processes, CRC Press, Boca Raton, 2009. 10.1201/b17175Search in Google Scholar

[13] Bocharov G., Luzyanina T., Cupovic J. and Ludewig B., Asymmetry of cell division in CFSE-based lymphocyte proliferation analysis, Front. Immunol. 4 (2013), 10.3389/fimmu.2013.00264. 10.3389/fimmu.2013.00264Search in Google Scholar PubMed PubMed Central

[14] Brown L. D. and Levine M., Variance estimation in nonparametric regression via the difference sequence method, Ann. Statist. 35 (2007), 2219–2232. 10.1214/009053607000000145Search in Google Scholar

[15] Brynjarsdóttir J. and O’Hagan A., Learning about physical parameters: The importance of model discrepancy, Inverse Problems 30 (2014), Article ID 114007. 10.1088/0266-5611/30/11/114007Search in Google Scholar

[16] Carroll R. J. and Ruppert D., Transformation and Weighting in Regression, Chapman & Hall, New York, 1988. 10.1007/978-1-4899-2873-3Search in Google Scholar

[17] Davidian M., Nonlinear Models for Univariate and Multivariate Response. Chapters 9 and 11, lecture notes 2007, http://www4.stat.ncsu.edu/~davidian/courses.html. Search in Google Scholar

[18] Davidian M. and Giltinan D., Nonlinear Models for Repeated Measurement Data, Chapman & Hall, London, 1998. Search in Google Scholar

[19] Dette H., Munk A. and Wagner T., Estimating the variance in nonparametric regression – What is a reasonable choice?, J. R. Statist. Soc. B 60 (1998), 751–764. 10.1111/1467-9868.00152Search in Google Scholar

[20] Doherty J. and Welter D., A short exploration of structural noise, Water Resource Research 46 (2010), Article ID W05525. 10.1029/2009WR008377Search in Google Scholar

[21] Efron B. and Tibshirani R. J., An Introduction to the Bootstrap, Chapman & Hall/CRC Press, Boca Raton, 1998. Search in Google Scholar

[22] Kapraun D. F., Cell proliferation models, CFSE-based flow cytometry data, and quantification of uncertainty, Ph.D. thesis, North Carolina State University, Raleigh, 2014. Search in Google Scholar

[23] Levine M., Bandwidth selection for a class of difference-based variance estimators in the nonparametric regression: A possible approach, Comput. Statist. Data Anal. 50 (2006), 3405–3431. 10.1016/j.csda.2005.08.001Search in Google Scholar

[24] Luzyanina T., Cupovic J., Ludewig B. and Bocharov G., Mathematical models for CFSE labelled lymphocyte dynamics: Asymmetry and time-lag in division, J. Math. Biol. 69 (2014), 1547–1583. 10.1007/s00285-013-0741-zSearch in Google Scholar PubMed

[25] Müller H.-G. and Stadtmüller U., Estimation of heteroscedasticity in regression analysis, Ann. Statist. 15 (1987), 610–625. 10.1214/aos/1176350364Search in Google Scholar

[26] Seber G. A. F. and Wild C. J., Nonlinear Regression, John Wiley & Sons, Hoboken, 2003. Search in Google Scholar

[27] Thompson W. C., Partial differential equation modeling of flow cytometry data from CFSE-based proliferation assays, Ph.D. thesis, North Carolina State University, Raleigh, 2011. Search in Google Scholar

[28] Tong T., Liu A. and Wang Y., Relative errors of difference-based variance estimators in nonparametric regression, Comm. Statist. Theory Methods 37 (2008), 2890–2902. 10.1080/03610920802162656Search in Google Scholar

[29] Vrugt J. A., Diks C. G. H., Gupta H. V., Bouten W. and Verstraten J. M., Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation, Water Resources Research 41 (2005), Article ID W01017. 10.1029/2004WR003059Search in Google Scholar

Received: 2015-5-22
Revised: 2015-12-22
Accepted: 2016-1-15
Published Online: 2016-4-7
Published in Print: 2016-8-1

© 2016 by De Gruyter

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/jiip-2015-0090/html
Scroll to top button