Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 1, 2005

Hydrothermal waves and corotating rolls in laterally heated convection in simple liquids

  • Carlos Pérez-García , Santiago Madruga , Blas Echebarria , Georgy Lebon and Javier Burguete

Abstract

The stability of a liquid layer with an undeformable interface open to the atmosphere, subjected to a horizontal temperature gradient, is theoretically analysed. Buoyancy and surface tension forces give rise to a basic flow for any temperature difference applied on the system. Depending on the liquid depth, this basic flow is destabilised either by an oscillatory instability, giving rise to the so-called hydrothermal waves, or by a stationary instability leading to corotating rolls. Oscillatory perturbations are driven by the basic flow and therefore one must distinguish between convective and absolute thresholds. The instability mechanisms as well as the different regimes observed in experiments are discussed. The calculations are performed for a fluid used in recent experiments, namely silicone oil of 0.65 cSt (Pr = 10). In particular, it is shown that two branches of absolute instability exist, which may be related to the two types of hydrothermal waves observed experimentally.

:

Corresponding author ()

References

1 Cross, M.C., Hohenberg, P.C., Pattern formation outside of equilibrium, Rev. Mod. Phys., 65 (1993), 852–1112.10.1103/RevModPhys.65.851Search in Google Scholar

2 Bénard, H., Les tourbillons cellulaires dans une nappe liquide transportent la chaleur par convection en régime permanent, Rev. Gén. Sci. Pure Appl., 11 (1900), 1261–1271, 1309–1318.Search in Google Scholar

3 Smith, M.K., Davis, S.H., Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective instabilities, J. Fluid Mech., 132 (1983), 119–144.10.1017/S0022112083001512Search in Google Scholar

4 Smith, M.K., Instability mechanisms in dynamic thermocapillary liquid layer, Phys. Fluids, 29 (1986), 3182–3186.10.1063/1.865836Search in Google Scholar

5 Smith, M.K., The nonlinear stability of dynamic thermocapillary liquid layers, J. Fluid Mech., 194 (1988), 391–415.10.1017/S0022112088003040Search in Google Scholar

6 Laure, P., Roux, B., Linear and nonlinear analysis of the Hadley circulation, J. Crys. Growth, 97 (1989), 226–234.10.1016/0022-0248(89)90264-9Search in Google Scholar

7 Ben Hadid, H., Roux, B., Thermocapillary convection in long layers of low-Prandtl-number melts subjected to a horizontal temperature gradient, J. Fluid Mech., 221 (1990), 77–103; Buoyancy and thermocapillary-driven flows in differentially heated cavities for low-Prandtl-number fluids, J. Fluid Mech., 235 (1992), 1–36.Search in Google Scholar

8 Gershuni, G.Z., Laure, P., Myznikov, V.M., Roux, B., Zhukhovitsky, E.M., On the stability of plane-parallel advective flows in long horizontal layers, Micrograv. Q., 2 (1992), 141–152.Search in Google Scholar

9 Parmentier, P.M., Regnier, V.C., Lebon, G., Buoyant-thermocapillary instabilities in medium Pr number fluid layers subject to a horizontal temperature gradient, Int. J. Heat Mass Transfer, 36 (1993), 2417–2427.10.1016/S0017-9310(05)80125-5Search in Google Scholar

10 Mercier, J.F., Normand, C., Buoyant–thermocapillary instabilities of differentially heated liquid layers, Phys. Fluids, 8 (1996), 1434–1445.10.1063/1.868920Search in Google Scholar

11 Schwabe, D., Müller, U., Schneider, J., Scharmann, A., Instabilities of shallow dynamic thermocapillary liquid bridges, Phys. Fluids A, 4 (1992), 2368–2381.10.1063/1.858478Search in Google Scholar

12 Villers, D., Platten, J.K., Coupled buoyancy and Marangoni convection in acetone: Experiments and comparison with numerical simulations, J. Fluid Mech., 234 (1992), 487–510.10.1017/S0022112092000880Search in Google Scholar

13 Ezersky, A.B., Garcimartín, A., Mancini, H.L., Pérez-García, Hydrothermal waves in Marangoni convection in a cylindrical container, Phys. Rev. E, 47 (1992), 1126–1131; Spatiotemporal structure of hydrothermal waves in Marangoni convection, Phys. Rev. E, 48 (1992), 4414–4422.Search in Google Scholar

14 De Saedeleer, C., Garcimartín, A., Chavepeyer, G., Platten, J.K., Lebon, G., The instability of a liquid layer heated from the side when the upper surface is open to air, Phys. Fluids, 8 (1996), 670–676.10.1063/1.868852Search in Google Scholar

15 Daviaud, F., Vince, J.M., Travelling waves in a fluid layer subjected to a horizontal temperature gradient, Phys. Rev. E, 48 (1993), 4432–4436.10.1103/PhysRevE.48.4432Search in Google Scholar PubMed

16 Mukolobwiez, N., Chiaudel, A., Daviaud, F., Supercritical Eckhaus instability for surface-tension-driven hydrothermal waves, Phys. Rev. Lett., 80 (1998), 4661–4664.10.1103/PhysRevLett.80.4661Search in Google Scholar

17 Riley, R.J., Neitzel, G.P., Instability of thermocapillary-buoyancy convection in shallow layers. Part 1. Characterization of steady and oscillatory instabilities, J. Fluid Mech., 359 (1998), 143–164.10.1017/S0022112097008343Search in Google Scholar

18 Priede, J., Gerbeth, G., Convective, absolute, and global instabilities of thermocapillary-buoyancy convection in extended layers, Phys. Rev. E, 56 (1997), 4187–4199.10.1103/PhysRevE.56.4187Search in Google Scholar

19 Pelacho, M.A., Burguete, J., Temperature oscillations of hydrothermal waves in thermocapillary-buoyancy convection, Phys. Rev. E, 59 (1999), 835–840; Pelacho, M.A., Garcimartín, A., Burguete, J., Local Marangoni number at the onset of hydrothermal waves, Phys. Rev. E, 62 (2000), 477–483; Pelacho, M.A., Ondas hidrotermales en sistemas con.nados, Ph.D. Thesis, Universidad de Navarra, 2000.Search in Google Scholar

20 Burguete, J., Mukolobwiez, N., Daviaud, F., Garnier, N., Chiaudel, A., Buoyant-thermocapillary instabilities in an extended liquid layer subjected to a horizontal temperature gradient, Phys. Fluids, 13 (2001), 2773–2787.10.1063/1.1398536Search in Google Scholar

21 Garnier, N., Ondes non-linéaires a une et deux dimensions dans une mince couche de fluide, Ph.D. Thesis, Université Paris 7-Denis Diderot, 2000.Search in Google Scholar

22 Garnier, N., Chiaudel, A., Two-dimensional hydrothermal waves in an extended cylindrical vessel, Eur. Phys. J. B, 19 (2001), 87–95.10.1007/s100510170352Search in Google Scholar

23 Garnier, N., Chiaudel, A., Daviaud, F., Prigent, A., Nonlinear dynamics of waves and modulated waves in 1D thermocapillary flows I: General presentation and periodic solutions, Physica D, 174 (2003), 1–29; Garnier, N., Chiaudel, A., Daviaud, F., Nonlinear dynamics of waves and modulated waves in 1D thermocapillary flows II: Convective/absolute transition, Physica D, 174 (2003), 30–55.Search in Google Scholar

24 Shetsova, V.M., Nepomnyashchy, A.A., Legros, J.C., Thermocapillary-buoyancy convection in a shallow cavity heated from the side, Phys. Rev. E, 67 (2003), 066308.10.1103/PhysRevE.67.066308Search in Google Scholar PubMed

25 Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, P.A., Spectral Methods in Fluid Dynamics, Springer, Berlin, 1994.Search in Google Scholar

26 Briggs, R.J., Electron Streams Interaction with Plasmas, MIT Press, Cambridge, USA, 1964.10.7551/mitpress/2675.001.0001Search in Google Scholar

27 Bers, A., Space-time evolution of plasma instabilities-absolute and convective, in Handbook of Plasma Physics, M. Rosenbluth and R.Z. Sagdeev, eds., vol 1, 452–516, North-Holland, Amsterdam, 1983.Search in Google Scholar

28 Huerre, P., Monkewitz, P.A., Local and global instabilities in spatially developing flows, Ann. Rev. Fluid Mech., 22 (1990), 473–537.10.1146/annurev.fl.22.010190.002353Search in Google Scholar

Published Online: 2005-06-01
Published in Print: 2004-12-01

© Walter de Gruyter

Downloaded on 3.5.2024 from https://www.degruyter.com/document/doi/10.1515/JNETDY.2004.062/html
Scroll to top button