Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter Open Access March 23, 2017

Kinematic Modeling of Distant Galaxies

  • Rain Kipper EMAIL logo , Elmo Tempel and Antti Tamm
From the journal Open Astronomy

Abstract

Evolution of galaxies is one of the most actual topics in astrophysics. Among the most important factors determining the evolution are two galactic components which are difficult or even impossible to detect optically: the gaseous disks and the dark matter halo. We use deep Hubble Space Telescope images to construct a two-component (bulge + disk) model for stellar matter distribution of galaxies. Properties of the galactic components are derived using a three-dimensional galaxy modeling software, which also estimates disk thickness and inclination angle. We add a gas disk and a dark matter halo and use hydrodynamical equations to calculate gas rotation and dispersion profiles in the resultant gravitational potential. We compare the kinematic profiles with the Team Keck Redshift Survey observations. In this pilot study, two galaxies are analyzed deriving parameters for their stellar components; both galaxies are found to be disk-dominated. Using the kinematical model, the gas mass and stellar mass ratio in the disk are estimated.

References

Chemin L., de Blok W. J. G., Mamon G. A. 2011, AJ, 142, 10910.1088/0004-6256/142/4/109Search in Google Scholar

Conselice C. J. 2003, ApJS, 147, 110.1086/375001Search in Google Scholar

Fathi K., Gatchell M., Hatziminaoglou E., Benoit E. 2012, MNRAS, 423, L11210.1111/j.1745-3933.2012.01270.xSearch in Google Scholar

Fernández Lorenzo M., Cepa J., Bongiovanni A. et al. 2010, A&A, 521, A2710.1051/0004-6361/201014244Search in Google Scholar

Giavalisco M., Ferguson H. C., Koekemoer A. M. et al. 2004, ApJ, 600, L9310.1086/378578Search in Google Scholar

Jardel J. R., Gebhardt K., Shen J. et al. 2011, ApJ, 739, 2110.1088/0004-637X/739/1/21Search in Google Scholar

Merritt D., Graham A. W., Moore B. et al. 2006, AJ, 132, 268510.1086/508988Search in Google Scholar

Miller S.H., Bundy K., Sullivan M. et al. 2011, ApJ, 741, 11510.1088/0004-637X/741/2/115Search in Google Scholar

Lackner C. N., Gunn J. E. 2012, MNRAS, 421, 227710.1111/j.1365-2966.2012.20450.xSearch in Google Scholar

Mutchler M., Cox C. 2001, Instrument Science Report, ACS 2001-07Search in Google Scholar

Navarro J. F., Ludlow A., Springel V. et al. 2010, MNRAS, 402, 2110.1111/j.1365-2966.2009.15878.xSearch in Google Scholar

Simard L., Mendel J. T., Patton D. R. et al. 2011, ApJS, 196, 1110.1088/0067-0049/196/1/11Search in Google Scholar

Sirianni M., Jee M. J., Ben´ıtez N. et al. 2005, PASP, 117, 104910.1086/444553Search in Google Scholar

Tamm A., Tenjes P. 2003, A&A, 403, 52910.1051/0004-6361:20030327Search in Google Scholar

Tamm A., Tenjes P. 2005, A&A, 433, 3110.1051/0004-6361:20041879Search in Google Scholar

Tamm A., Tenjes P. 2006, A&A, 449, 6710.1051/0004-6361:20054065Search in Google Scholar

Tempel E., Tenjes P. 2006, MNRAS, 371, 126910.1111/j.1365-2966.2006.10741.xSearch in Google Scholar

Tempel E., Tamm A., Tenjes P. 2010, A&A, 509, A9110.1051/0004-6361/200912186Search in Google Scholar

Tempel E., Tuvikene T., Tamm A. et al. 2011, A&A, 526, A15510.1051/0004-6361/201016067Search in Google Scholar

Tenjes P., Haud U., Einasto J. 1994, A&A, 286, 753Search in Google Scholar

Tenjes P., Haud U., Einasto J. 1998, A&A, 335, 449Search in Google Scholar

Weiner B. J. Willmer C. N. A., Faber S. M. et al. 2006, ApJ, 653, 102710.1086/508921Search in Google Scholar

Wirth G. D., Willmer C. N. A., Amico P. et al. 2004, AJ, 127, 312110.1086/420999Search in Google Scholar

York D. G., Adelman J., Anderson Jr. J. E. et al. 2000, AJ, 120, 1579Search in Google Scholar

Received: 2012-8-9
Accepted: 2012-9-14
Published Online: 2017-3-23
Published in Print: 2012-12-1

© 2017

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Downloaded on 26.5.2024 from https://www.degruyter.com/document/doi/10.1515/astro-2017-0408/html
Scroll to top button