Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access December 31, 2019

Mapping linear viscoelasticity for design and tactile intuition

  • R. E. Corman and Randy H. Ewoldt EMAIL logo
From the journal Applied Rheology

Abstract

We propose and study methods to improve tactile intuition for linear viscoelastic fluids. This includes (i) Pipkin mapping with amplitude based on stress rather than strain or strain-rate to map perception to rheological test conditions; and (ii) data reduction of linear viscoelastic functions to generate multi-dimensional Ashby-style cross-property plots. Two model materials are used, specifically chosen to be easily accessible and safe to handle, with variable elastic, viscous, and relaxation time distributions. First, a commercially available polymer melt known as physical therapy putty, reminiscent of Silly Putty, designed for a range of user experiences (extra-soft to extra-firm). Second, a transiently cross-linked aqueous polymer solution (Polyvinyl alcohol-Sodium Tetraborate, PVA-Borax). Readers are encouraged to procure or produce the samples themselves to build intuition. The methods studied here reduce the complexity of the function-valued viscoelastic data, identifying what key features we sense and see when handling these materials, and provide a framework for tactile intuition, material selection, and material design for linear viscoelastic fluids generally.

References

[1] Ashby M.F., Material Selection in Mechanical Design, Butterworth-Heinemann, Boston, MA, 2 edition, 1999Search in Google Scholar

[2] Ashby M.F., Materials Selection in Mechanical Design, Elsevier, Oxford, 3 edition, 2005Search in Google Scholar

[3] Ashby M.F., Johnson K., Materials and Design: The Art and Science of Material Selection in Product Design, Elsevier, Oxford, 2 edition, 201010.1016/B978-1-85617-497-8.50007-6Search in Google Scholar

[4] MatWeb, MatWeb Material Property Data, available at http://www.matweb.comSearch in Google Scholar

[5] United Laboratories, UL Prospector, available at http://www.urlprospector.comSearch in Google Scholar

[6] Macosko C.W., Rheology: principles, measurements, and applications, Wiley-VCH, New York, 1994Search in Google Scholar

[7] Barnes H.A., Hutton J.F., Walters K., An Introdcution to Rheology, volume 1, Elsevier, 1989Search in Google Scholar

[8] Smooth-on, Durometer Shore Hardness Scale, available at https://www.smooth-on.com/page/durometer-shore-hardness-scaleSearch in Google Scholar

[9] Shadwick R.E., Mechanical Design in Arteries, Journal of Experimental Biology, 202, 1999, 3305–331310.1242/jeb.202.23.3305Search in Google Scholar PubMed

[10] Autumn K., Liang Y.A., Hsieh S.T., Zesch W., Chan W.P., Kenny T.W., Fearing R., Full R.J., Adhesive Force of a Single Gecko Foot-hair., Nature, 405(6787), 2000, 681–5, 10.1038/35015073Search in Google Scholar

[11] Denny M., The Role of Gastropod Pedal Mucus in Locomotion, Nature, 285, 1980, 160–16110.1038/285160a0Search in Google Scholar

[12] Ewoldt R.H., Extremely Soft: Design with Rheologically Complex Fluids, Soft Robotics, 1(1), 2014, 12–20, 10.1089/soro.2013.150810.1089/soro.2013.1508Search in Google Scholar

[13] Aksak B., Murphy M.P., Sitti M., Adhesion of Biologically Inspired Vertical and Angled Polymer Microfiber Arrays., Langmuir, 23(6), 2007, 3322–32, 10.1021/la062697t10.1021/la062697tSearch in Google Scholar PubMed

[14] Kim S., Sitti M., Biologically Inspired Polymer Microfibers with Spatulate Tips As Repeatable Fibrillar Adhesives, Applied Physics Letters, 89(26), 2006, 261911, 10.1063/1.242444210.1063/1.2424442Search in Google Scholar

[15] Kim D.H., Rogers J.A., Stretchable Electronics: Materials Strategies and Devices, Advanced Materials, 20(24), 2008, 4887–4892, 10.1002/adma.20080178810.1002/adma.200801788Search in Google Scholar

[16] Murphy M.P., Sitti M., Waalbot: An Agile Small-Scale Wall-Climbing Robot Utilizing Dry Elastomer Adhesives, IEEE/ASME Transactions on Mechatronics, 12(3), 2007, 330–338, 10.1109/TMECH.2007.89727710.1109/TMECH.2007.897277Search in Google Scholar

[17] Qu L., Dai L., Stone M., Xia Z., Wang Z.L., Carbon Nanotube Arrays with Strong Shear Binding-On and Easy Normal Lifting-Off, Science, 322(5899), 2008, 238–42, 10.1126/science.1159503Search in Google Scholar

[18] Seok S., Onal C.D., Wood R., Rus D., Kim S., Peristaltic Locomotion with Antagonistic Actuators in Soft Robotics, IEEE International Conference on Robotics and Automation, 2010, 1228–1233Search in Google Scholar

[19] Laschi C., Cianchetti M., Mazzolai B., Margheri L., Follador M., Dario P., Soft Robot Arm Inspired by the Octopus, Advanced Robotics, 26(7), 2012, 709–727, 10.1163/156855312X62634310.1163/156855312X626343Search in Google Scholar

[20] Lin H.T., Leisk G.G., Trimmer B., GoQBot: A Caterpillar-Inspired Soft-Bodied Rolling Robot., Bioinspiration & Biomimetics, 6(2), 2011, 026007, 10.1088/1748-3182/6/2/02600710.1088/1748-3182/6/2/026007Search in Google Scholar PubMed

[21] Kim S., Laschi C., Trimmer B., Soft Robotics: A Bioinspired Evolution in Robotics, Trends in Biotechnology, 31(5), 2013, 287–94, 10.1016/j.tibtech.2013.03.00210.1016/j.tibtech.2013.03.002Search in Google Scholar PubMed

[22] Bird R.B., Armstrong R., Hassger O., Dynamics of Polymeric Liquids: Volume 1 Fluid Mechanics, John Wiley and Sons, Inc., New York, 2 edition, 1987Search in Google Scholar

[23] Middleman S., Fundamentals of Polymer Processing, McGraw-Hill, New York, 1977Search in Google Scholar

[24] Tadmor Z., Principles of Polymer Processing, Wiley, New York, 1979Search in Google Scholar

[25] Denn M.M., Fifty Years of Non-Newtonian Fluid Dynamics, AIChE Journal, 50(10), 2004, 2335–2345, 10.1002/aic.1035710.1002/aic.10357Search in Google Scholar

[26] Fischer C., Braun S.A., Bourban P.E., Michaud V., Plummer C.J.G., Manson J.A.E., Dynamic Properties of Sandwich Structures with Integrated Shear-Thickening Fluids, Smart Materials and Structures, 15(5), 2006, 1467–1475, 10.1088/0964-1726/15/5/03610.1088/0964-1726/15/5/036Search in Google Scholar

[27] Laun H.M., Rheology of Extremely Shear Thickening Polymer Dispersions (Passively Viscosity Switching Fluids), Journal of Rheology, 35(6), 1991, 999–1034, 10.1122/1.55025710.1122/1.550257Search in Google Scholar

[28] Lee Y.S., Wetzel E.D., Wagner N.J., The Ballistic Impact Characteristics of Kevlar® Woven Fabrics Impregnated with A Colloidal Shear Thickening Fluid, Journal of Materials Science, 38(13), 2003, 2825–2833, 10.1023/A:102442420022110.1023/A:1024424200221Search in Google Scholar

[29] Smay J.E., Cesarano J., Lewis J.A., Colloidal Inks for Directed Assembly of 3-D Periodic Structures, Langmuir, 18(14), 2002, 5429–5437, 10.1021/LA025713510.1021/la0257135Search in Google Scholar

[30] O’Bryan C.S., Bhattacharjee T., Niemi S.R., Balachandar S., Baldwin N., Ellison S.T., Taylor C.R., Sawyer W.G., Angelini T.E., Three-Dimensional Printing with Sacrificial Materials for Soft Matter Manufacturing, MRS Bulletin, 42(08), 2017, 571–577, 10.1557/mrs.2017.16710.1557/mrs.2017.167Search in Google Scholar

[31] M’Barki A., Bocquet L., Stevenson A., Linking Rheology and Printability for Dense and Strong Ceramics by Direct Ink Writing, Scientific Reports, 7(1), 2017, 6017, 10.1038/s41598-017-06115-010.1038/s41598-017-06115-0Search in Google Scholar PubMed PubMed Central

[32] Nelson A.Z., Schweizer K.S., Rauzan B.M., Nuzzo R.G., Vermant J., Ewoldt R.H., Designing and Transforming Yield-Stress Fluids, Current Opinion in Solid State and Materials Science, 23(5), 2019, 100758, 10.1016/j.cossms.2019.06.00210.1016/j.cossms.2019.06.002Search in Google Scholar

[33] Aguado B.A., Mulyasasmita W., Su J., Lampe K.J., Heilshorn S.C., Improving Viability of Stem Cells During Syringe Needle Flow Through the Design of Hydrogel Cell Carriers, Tissue Engineering Part A, 18(7-8), 2012, 806–815, 10.1089/ten.tea.2011.039110.1089/ten.tea.2011.0391Search in Google Scholar PubMed PubMed Central

[34] Lopez Hernandez H., Grosskopf A.K., Stapleton L.M., Agmon G., Appel E.A., Non-Newtonian Polymer-Nanoparticle Hydrogels Enhance Cell Viability during Injection, Macromolecular Bioscience, 19(1), 2019, 1800275, 10.1002/mabi.20180027510.1002/mabi.201800275Search in Google Scholar PubMed

[35] Glassman M.J., Chan J., Olsen B.D., Reinforcement of Shear Thinning Protein Hydrogels by Responsive Block Copolymer Self-Assembly, Advanced Functional Materials, 23(9), 2013, 1182–1193, 10.1002/adfm.20120203410.1002/adfm.201202034Search in Google Scholar PubMed PubMed Central

[36] Yan C., Mackay M.E., Czymmek K., Nagarkar R.P., Schneider J.P., Pochan D.J., Injectable Solid Peptide Hydrogel as a Cell Carrier: Effects of Shear Flow on Hydrogels and Cell Payload, Langmuir, 28(14), 2012, 6076–6087, 10.1021/la204174610.1021/la2041746Search in Google Scholar PubMed PubMed Central

[37] Cai L., Dewi R.E., Heilshorn S.C., Injectable Hydrogels with In Situ Double Network Formation Enhance Retention of Transplanted Stem Cells, Advanced Functional Materials, 25(9), 2015, 1344–1351, 10.1002/adfm.20140363110.1002/adfm.201403631Search in Google Scholar PubMed PubMed Central

[38] Ewoldt R.H., Clasen C., Hosoi A.E., McKinley G.H., Rheological Fingerprinting of Gastropod Pedal Mucus and Synthetic Complex Fluids for Biomimicking Adhesive Locomotion, Soft Matter, 3(5), 2007, 634–643, 10.1039/b615546d10.1039/b615546dSearch in Google Scholar PubMed

[39] Nelson A.Z., Ewoldt R.H., Design of Yield-Stress Fluids: A Rheology-to-Structure Inverse Problem, Soft Matter, 13(41), 2017, 7578–7594, 10.1039/C7SM00758B10.1039/C7SM00758BSearch in Google Scholar PubMed

[40] Nelson A.Z., Bras R.E., Liu J., Ewoldt R.H., Extending Yield-Stress Fluid Paradigms, Journal of Rheology, 62(1), 2018, 357–369, 10.1122/1.500384110.1122/1.5003841Search in Google Scholar

[41] Corman R.E., Rao L., Bharadwaj N.A., Allison J.T., Ewoldt R.H., Setting Material Function Design Targets for Linear Viscoelastic Materials and Structures, Journal of Mechanical Design, 138(5), 2016, 051402, 10.1115/1.403269810.1115/1.4032698Search in Google Scholar

[42] Xu H., Li Y., Brinson C., Chen W., Brinson L.C., Chen W., Brinson C., Chen W., A Descriptor-Based Design Methodology for Developing Heterogeneous Microstructural Materials System, Journal of Mechanical Design, 136(5), 2014, 051007, 10.1115/1.402664910.1115/1.4026649Search in Google Scholar

[43] Olson G.B., Designing a New Material World, Science, 288(5468), 2000, 993–99810.1126/science.288.5468.993Search in Google Scholar

[44] Scott Blair G., Psychorheology: Links Between The Past and The Present, Journal of Texture Studies, 5(1), 1974, 3–12, 10.1111/j.1745-4603.1974.tb01083.x10.1111/j.1745-4603.1974.tb01083.xSearch in Google Scholar

[45] Moskowitz H.R., Psychorheology — Its Foundations and Current Outlook, Journal of Texture Studies, 8(2), 1977, 229–24610.1111/j.1745-4603.1977.tb01177.xSearch in Google Scholar

[46] Moskowitz H.R., On Fitting Equations to Sensory Data: A Point of View and a Paradox in Modeling and Optimizing, Journal of Sensory Studies, 15(1), 2000, 1–19, 10.1111/j.1745-459X.2000.tb00403.x10.1111/j.1745-459X.2000.tb00403.xSearch in Google Scholar

[47] Szczesniak A.S., Correlating Sensory with Instrumental Texture Measurements — An Overview of Recent Developments, Journal of Texture Studies, 18(1), 1987, 1–15, 10.1111/j.1745-4603.1987.tb00566.x10.1111/j.1745-4603.1987.tb00566.xSearch in Google Scholar

[48] Kokini J.L., Kadane J.B., Cussler E.L., Liquid Texture Perceived in the Mouth, Journal of Texture Studies, 8(2), 1977, 195–218, 10.1111/j.1745-4603.1977.tb01175.x10.1111/j.1745-4603.1977.tb01175.xSearch in Google Scholar

[49] Voisey P.W., Modernization of Texture Instrumentation, Journal of Texture Studies, 2(2), 1971, 129–195, 10.1111/j.1745-4603.1971.tb00580.x10.1111/j.1745-4603.1971.tb00580.xSearch in Google Scholar PubMed

[50] Elejalde C.C., Kokini J.L., The Psychophysics of Pouring, Spreading and In-Mouth Viscosity, Journal of Texture Studies, 23(3), 1992, 315–336, 10.1111/j.1745-4603.1992.tb00528.x10.1111/j.1745-4603.1992.tb00528.xSearch in Google Scholar

[51] Henry W.F., Katz M.H., Pilgrim F.J., May A., Textrue of Semi-Solid Foods: Sensory and Physical Correlates, Journal of Food Science, 36(1), 1971, 155–161, 10.1111/j.1365-2621.1971.tb02059.x10.1111/j.1365-2621.1971.tb02059.xSearch in Google Scholar

[52] Dahl D.W., Moreau P., The Influence and Value of Analogical Thinking During New Product Ideation, Journal of Marketing Research, 39(1), 2002, 47–60, 10.1509/jmkr.39.1.47.1893010.1509/jmkr.39.1.47.18930Search in Google Scholar

[53] Needham D.R., Begg I.M., Problem-Oriented Training Promotes Spontaneous Analogical Transfer: Memory-Oriented Training Promotes Memory for Training, Memory & Cognition, 19(6), 1991, 543–557, 10.3758/BF0319715010.3758/BF03197150Search in Google Scholar PubMed

[54] Chan J., Fu K., Schunn C., Cagan J., Wood K., Kotovsky K., On the Benefits and Pitfalls of Analogies for Innovative Design: Ideation Performance Based on Analogical Distance, Commonness, and Modality of Examples, Journal of Mechanical Design, 133(8), 2011, 081004, 10.1115/1.400439610.1115/1.4004396Search in Google Scholar

[55] Atman C.J., Cardella M.E., Turns J., Adams R., Comparing Freshman and Senior Engineering Design Processes: An In-Depth Follow-Up Study, Design Studies, 26(4), 2005, 325–357, 10.1016/j.destud.2004.09.00510.1016/j.destud.2004.09.005Search in Google Scholar

[56] Barbe W.B., Swassing R.H., Milone M.N., Teaching Through Modality Strengths: Concepts and Practices, Zaner-Bloser, Columbus, Ohio, 1979Search in Google Scholar

[57] Granta: CES Selector Materials Selection Software, available at http://www.grantadesign.com/products/ces/Search in Google Scholar

[58] Davis J.G., The Rheology of Cheese, Butter and Other Milk Products. (The Measurement of “Body” and “Texture”), Journal of Dairy Research, 8(02), 1937, 245, 10.1017/S002202990000209010.1017/S0022029900002090Search in Google Scholar

[59] Ferry J.D., Viscoelastic Properties of Polymers, John Wiley & Sons, Inc, New York, 3 edition, 1980Search in Google Scholar

[60] Tschoegl N.W., The Phenomenological Theory of Linear Viscoelastic Behavior, Springer-Verlag, Berlin, 198910.1007/978-3-642-73602-5Search in Google Scholar

[61] Martinetti L., Soulages J.M., Ewoldt R.H., Continuous Relaxation Spectra for Constitutive Models in Medium-Amplitude Oscillatory Shear, Journal of Rheology, 62(5), 2018, 1271–1298, 10.1122/1.502508010.1122/1.5025080Search in Google Scholar

[62] Armitage D., Hughes M., Sinden A., The Preparation of “Bouncing Putty”: An Undergraduate Experiment in Silicone Chemistry, Journal of Chemical Education, 50(6), 1973, 43410.1021/ed050p434Search in Google Scholar

[63] Minuto M.A., Method of Making Bouncing Silicone Putty-Like Compositions, 1983, US Patent 4,371,493 ASearch in Google Scholar

[64] Wright J.G.E., Process for Making Puttylike Elastic Plastic, Siloxane Derivative Composition Containing Zinc Hydroxide, 1951, US Patent 2,541,851 ASearch in Google Scholar

[65] McGregor R.R., Warrick E.L., Treating Dimethyl Silicone Polymer with Boric Oxide, 1967, US Patent 2,431,878 ASearch in Google Scholar

[66] Linear viscoelasticity of complex coacervates, Advances in Colloid and Interface Science, 239, 2017, 46–60, 10.1016/J.CIS.2016.08.01010.1016/j.cis.2016.08.010Search in Google Scholar PubMed

[67] Muderick A., Therapeutic Putty with Increasing or Decreasing Stiffness, 2009, US Patent 7,618,349 B1Search in Google Scholar

[68] Gibbon R.M., Monitor Putty with Increasing Stiffness, 1997, US Patent 5,693,689Search in Google Scholar

[69] Ewoldt R.H., Bharadwaj N.A., Low-Dimensional Intrinsic Material Functions for Nonlinear Viscoelasticity, Rheologica Acta, 52(3), 2013, 201–219, 10.1007/s00397-013-0686-610.1007/s00397-013-0686-6Search in Google Scholar

[70] Kokini J.L., Cussler E.L., Predicting the Texture of Liquid and Melting Semi-Solid Foods, Journal of Food Science, 48(4), 1983, 1221–1225, 10.1111/j.1365-2621.1983.tb09196.x10.1111/j.1365-2621.1983.tb09196.xSearch in Google Scholar

[71] Cook D.J., Oral Shear Stress Predicts Flavour Perception in Viscous Solutions, Chemical Senses, 28(1), 2003, 11–23, 10.1093/chemse/28.1.1110.1093/chemse/28.1.11Search in Google Scholar PubMed

[72] Bharadwaj N.A., Ewoldt R.H., The General Low-Frequency Prediction for Asymptotically Nonlinear Material Functions in Oscillatory Shear, Journal of Rheology, 58(4), 2014, 891–910, 10.1122/1.487434410.1122/1.4874344Search in Google Scholar

[73] Pipkin A.C., Lectures on Viscoelasticity Theory, Springer, New York, 197210.1007/978-1-4615-9970-8Search in Google Scholar

[74] Ewoldt R.H., McKinley G.H., Mapping Thixo-Elasto-Visco-Plastic Behavior, Rheologica Acta, 56, 2017, 195–210, 10.1007/s00397-017-1001-810.1007/s00397-017-1001-8Search in Google Scholar

[75] Dealy J.M., Weissenberg and Deborah Numbers — Their Definition and Use, Rheology Bulletin, 79(2), 2010Search in Google Scholar

[76] Ewoldt R.H., Gurnon A., Lopez-Barron C., McKinley G.H., Swan J., Wagner N.J., A Report on “LAOS Rheology Day” Held Friday the 13th at the Colburn Laboratory, University of Delaware, Rheology Bulletin, 81(2), 2012Search in Google Scholar

[77] Dimitriou C.J., Ewoldt R.H., McKinley G.H., Describing and Prescribing the Constitutive Response of Yield Stress Fluids Using Large Amplitude Oscillatory Shear Stress (LAOStress), Journal of Rheology, 57(1), 2013, 27–70, 10.1122/1.475402310.1122/1.4754023Search in Google Scholar

[78] Skedung L., Danerlöv K., Olofsson U., Michael Johannesson C., Aikala M., Kettle J., Arvidsson M., Berglund B., Rutland M.W., Tactile Perception: Finger Friction, Surface Roughness and Perceived Coarseness, Tribology International, 44(5), 2011, 505–512, 10.1016/j.triboint.2010.04.01010.1016/j.triboint.2010.04.010Search in Google Scholar

[79] Skedung L., Arvidsson M., Chung J.Y., Stafford C.M., Berglund B., Rutland M.W., Feeling Small: Exploring The Tactile Perception Limits, Scientific Reports, 3, 2013, 2617, 10.1038/srep0261710.1038/srep02617Search in Google Scholar

[80] Crosby C.A., Wehbé M.A., Hand Strength: Normative Values, The Journal of Hand Surgery, 19(4), 1994, 665–670, 10.1016/0363-5023(94)90280-110.1016/0363-5023(94)90280-1Search in Google Scholar

[81] Hand Anthropometry, accessed at https://usability.gtri.gatech.edu/eou_info/hand_anthro.phpSearch in Google Scholar

[82] Ashendorf L., Vanderslice-Barr J.L., McCaffrey R.J., Motor Tests and Cognition in Healthy Older Adults, Applied Neuropsychology, 16(3), 2009, 171–176, 10.1080/0908428090309856210.1080/09084280903098562Search in Google Scholar PubMed

[83] Hubel K.A., Yund E.W., Herron T.J., Woods D.L., Computerized Measures of Finger Tapping: Reliability, Malingering and Traumatic Brain Injury, Journal of Clinical and Experimental Neuropsychology, 35(7), 2013, 745–758, 10.1080/13803395.2013.82407010.1080/13803395.2013.824070Search in Google Scholar PubMed

[84] Potter M.C., Wyble B., Hagmann C.E., McCourt E.S., Detecting Meaning in RSVP at 13 ms per Picture, Attention, perception & psychophysics, 2013, 10.3758/s13414-013-0605-z10.3758/s13414-013-0605-zSearch in Google Scholar PubMed

[85] Cambridge Polymer Group, The Cambridge Polymer Group Silly Putty(TM) “Egg”, Technical report, 2002, available at http://www.campoly.com/files/6713/5216/6040/sillyputty.pdfSearch in Google Scholar

[86] Edgeworth R., Dalton B.J., Parnell T., The Pitch Drop Experiment, European Journal of Physics, 5(4), 1984, 198–200, 10.1088/0143-0807/5/4/00310.1088/0143-0807/5/4/003Search in Google Scholar

[87] Here’s What Happens When You Drop 100 Pounds of Silly Putty Off of a 141-Foot Building, 2017, available at https://www.wral.com/here-s-what-happens-when-you-drop-100-pounds-of-silly-putty-off-of-a-141-foot-building/16760896/Search in Google Scholar

[88] Morioka M., Grifln M.J., Thresholds for the Perception of Hand-Transmitted Vibration: Dependence on Contact Area and Contact Location, Somatosensory & Motor Research, 22(4), 2005, 281–97, 10.1080/0899022050042040010.1080/08990220500420400Search in Google Scholar

[89] Brisben A.J., Hsiao S.S., Johnson K.O., Detection of Vibration Transmitted Through an Object Grasped in the Hand, Journal of Neurophysiology, 81(4), 1999, 1548–1558, 10.1152/jn.1999.81.4.154810.1152/jn.1999.81.4.1548Search in Google Scholar

[90] Astin A.D., Finger Force Capability: Measurement and Prediction Using Anthropometric and Myoelectric Measures, Ms thesis, Virginia Polytechnic Institute and State University, 1999Search in Google Scholar

[91] Ewoldt R.H., Johnston M.T., Caretta L.M., Experimental challenges of shear rheology: how to avoid bad data, in S. Spagnoli, ed., Complex Fluids in Biological Systems, Springer, 2015, 207–24110.1007/978-1-4939-2065-5_6Search in Google Scholar

[92] Carey-De La Torre O., Elastic Stiffening in PVA-Borax Studied with Experimental Medium Amplitude Oscillatory Shear, Ms thesis, Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 2017Search in Google Scholar

[93] Martinetti L., Carey-De La Torre O., Schweizer K.S., Ewoldt R.H., Inferring the Nonlinear Mechanisms of a Reversible Network, Macromolecules, 51(21), 2018, 8772–8789, 10.1021/acs.macromol.8b0129510.1021/acs.macromol.8b01295Search in Google Scholar

[94] Carey-De La Torre O., Ewoldt R.H., First-Harmonic Nonlinearities Can Predict Unseen Third-Harmonics in Medium-Amplitude Oscillatory Shear (MAOS), Korea-Australia Rheology Journal, 30(1), 2018, 1–10, 10.1007/s13367-018-0001-210.1007/s13367-018-0001-2Search in Google Scholar

[95] Honerkamp J., Weese J., Determination of the relaxation spectrum by a regularization method, Macromolecules, 22(11), 1989, 4372–4377, 10.1021/ma00201a03610.1021/ma00201a036Search in Google Scholar

[96] Honerkamp J., Weese J., A Nonlinear Regularization Method for the Calculation of Relaxation Spectra, Rheologica Acta, 32(1), 1993, 65–73, 10.1007/BF0039667810.1007/BF00396678Search in Google Scholar

[97] Winter H., Analysis of Dynamic Mechanical Data: Inversion into a Relaxation Time Spectrum and Consistency Check, Journal of Non-Newtonian Fluid Mechanics, 68(2-3), 1997, 225–239, 10.1016/S0377-0257(96)01512-110.1016/S0377-0257(96)01512-1Search in Google Scholar

[98] Stadler F.J., Bailly C., A New Method for the Calculation of Continuous Relaxation Spectra From Dynamic-Mechanical Data, Rheologica Acta, 48(1), 2009, 33–49, 10.1007/s00397-008-0303-210.1007/s00397-008-0303-2Search in Google Scholar

[99] Baumgaertel M., Winter H., Interrelation Between Continuous and Discrete Relaxation Time Spectra, Journal of Non-Newtonian Fluid Mechanics, 44, 1992, 15–36, 10.1016/0377-0257(92)80043-W10.1016/0377-0257(92)80043-WSearch in Google Scholar

[100] Friedrich C., Braun H., Weese J., Determination of Relaxation Time Spectra by Analytical Inversion Using a Linear Viscoelastic Model with Fractional Derivatives, Polymer Engineering and Science, 35(21), 1995, 1661–1669, 10.1002/pen.76035210210.1002/pen.760352102Search in Google Scholar

[101] McDougall I., Orbey N., Dealy J.M., Inferring Meaningful Relaxation Spectra from Experimental Data, Journal of Rheology, 58(3), 2014, 779–797, 10.1122/1.487096710.1122/1.4870967Search in Google Scholar

[102] Davies A., Anderssen R., Sampling Localization in Determining the Relaxation Spectrum, Journal of Non-Newtonian Fluid Mechanics, 73(1-2), 1997, 163–179, 10.1016/S0377-0257(97)00056-610.1016/S0377-0257(97)00056-6Search in Google Scholar

[103] Cole K.S., Cole R.H., Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics, The Journal of Chemical Physics, 9(4), 1941, 341–351, 10.1063/1.175090610.1063/1.1750906Search in Google Scholar

[104] Larson R.G., The Structure and Rheology of Complex Fluids, Oxford University Press, Oxford, 1999Search in Google Scholar

[105] Berret J.F., Appell J., Porte G., Linear Rheology of Entangled Wormlike Micelles, Langmuir, 9(11), 1993, 2851–2854, 10.1021/la00035a02110.1021/la00035a021Search in Google Scholar

[106] Georgieva G.S., Anachkov S.E., Lieberwirth I., Koynov K., Kralchevsky P.A., Synergistic Growth of Giant Worm-like Micelles in Ternary Mixed Surfactant Solutions: Effect of Octanoic Acid, Langmuir, 32(48), 2016, 12885–12893, 10.1021/acs.langmuir.6b0395510.1021/acs.langmuir.6b03955Search in Google Scholar PubMed

[107] Nakaya-Yaegashi K., Ramos L., Tabuteau H., Ligoure C., Linear Viscoelasticity of Entangled Wormlike Micelles Bridged by Telechelic Polymers: An Experimental Model for a Double Transient Network, Journal of Rheology, 52(2), 2008, 359–377, 10.1122/1.282864510.1122/1.2828645Search in Google Scholar

[108] Chambon F., Petrovic Z.S., MacKnight W.J., Winter H.H., Rheology of Model Polyurethanes at the Gel Point, Macromolecules, 19(8), 1986, 2146–2149, 10.1021/ma00162a00710.1021/ma00162a007Search in Google Scholar

[109] Winter H.H., Chambon F., Analysis of Linear Viscoelasticity of a Crosslinking Polymer at the Gel Point, Journal of Rheology, 30(2), 1986, 367–382, 10.1122/1.54985310.1122/1.549853Search in Google Scholar

[110] Chambon F., Winter H.H., Linear Viscoelasticity at the Gel Point of a Crosslinking PDMS with Imbalanced Stoichiometry, Journal of Rheology, 31(8), 1987, 683–697, 10.1122/1.54995510.1122/1.549955Search in Google Scholar

[111] Grindy S.C., Learsch R., Mozhdehi D., Cheng J., Barrett D.G., Guan Z., Messersmith P.B., Holten-Andersen N., Control of Hierarchical Polymer Mechanics with Bioinspired Metal-Coordination Dynamics, Nature Materials, 14, 2015, 1210–1216, 10.1038/nmat440110.1038/nmat4401Search in Google Scholar PubMed PubMed Central

[112] Grindy S.C., Holten-Andersen N., Weber W., Anseth K.S., Spatz J.P., Bowman C.N., Messersmith P.B., Holten-Andersen N., Bio-Inspired Metal-Coordinate Hydrogels with Programmable Viscoelastic Material Functions Controlled by Longwave UV Light, Soft Matter, 13(22), 2017, 4057–4065, 10.1039/C7SM00617A10.1039/C7SM00617ASearch in Google Scholar

[113] Rubinstein M., Colby R.H., Polymer Physics, Oxford University Press, Oxford, 2003Search in Google Scholar

[114] Koike A., Nemoto N., Inoue T., Osaki K., Dynamic Light Scattering and Dynamic Viscoelasticity of Poly(vinyl alcohol) in Aqueous Borax Solutions. 1. Concentration Effect, Macromolecules, 28(7), 1995, 2339–2344, 10.1021/ma00111a02910.1021/ma00111a029Search in Google Scholar

[115] Nemoto N., Koike A., Osaki K., Dynamic Light Scattering and Dynamic Viscoelasticity of Poly(vinyl alcohol) in Aqueous Borax Solutions. 2. Polymer Concentration and Molecular Weight Effects, Macromolecules, 29(5), 1996, 1445–1451, 10.1021/ma951101y10.1021/ma951101ySearch in Google Scholar

[116] Lee Y.H., Corman R.E., Ewoldt R.H., Allison J.T., A Multiobjective Adaptive Surrogate Modeling-Based Optimization (MO-ASMO) Framework Using Eflcient Sampling Strategies, Proceedings of the ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2017, 10.1115/DETC2017-67541, paper DETC2017-67541, V02BT03A023Search in Google Scholar

Received: 2019-07-23
Accepted: 2019-09-09
Published Online: 2019-12-31

© 2019 R. E. Corman et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 Public License.

Downloaded on 1.5.2024 from https://www.degruyter.com/document/doi/10.1515/arh-2019-0013/html
Scroll to top button