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Abstract—With more IoT devices entering the consumer
market, it becomes imperative to detect their security vulner-
abilities before an attacker does. Existing binary analysis based
approaches only work on firmware, which is less accessible except
for those equipped with special tools for extracting the code from
the device. To address this challenge in IoT security analysis,
we present in this paper a novel automatic fuzzing framework,
called I0TFUZZER, which aims at finding memory corruption
vulnerabilities in IoT devices without access to their firmware
images. The key idea is based upon the observation that most
IoT devices are controlled through their official mobile apps,
and such an app often contains rich information about the
protocol it uses to communicate with its device. Therefore, by
identifying and reusing program-specific logic (e.g., encryption)
to mutate the test case (particularly message fields), we are able
to effectively probe IoT targets without relying on any knowledge
about its protocol specifications. In our research, we implemented
IoTFUZZER and evaluated 17 real-world IoT devices running
on different protocols, and our approach successfully identified
15 memory corruption vulnerabilities (including 8 previously
unknown ones).

I. INTRODUCTION

Recent years have witnessed the rapid progress of Internet
of Things (IoT) technologies, with many of them already
seeing wide adoption. Examples include smart plugs, smart
door locks, smart bulbs and many others. According to a recent
report [29], the number of IoT devices is projected to reach
20.4 billion in 2020, forming a global market valued $3 trillion.
The booming of this IoT ecosystem inevitably attracts cyber
criminals, who aim at compromising and controlling IoT de-
vices. The loose protection of these devices and pervasiveness
of vulnerabilities [15], [33], [8] in them actually present to
the miscreants low-hanging fruits. For instance, from 2014 to
2016, more than 90 independent IoT attack incidents have been
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reported [48], with devastating consequences in some of them.
A prominent example is the Mirai attack [32], which turns a
large number of online IoT devices (e.g., IP cameras and home
routers) into bots for launching DDoS attacks against online
services. Given the pervasiveness of vulnerable devices, we
strongly believe that these known attacks are nothing but a tip
of the iceberg.

An important target of IoT attacks is implementation
flaws (or security vulnerabilities) within a device’s firmware.
Systematic detection of these flaws needs to address a few
challenges. The primary one is the difficulty in firmware
acquisition because many vendors do not make their firmware
images publicly available. Alternatively, we can dump images
from the motherboard, which, however, needs the support from
enabled debugging ports, which may not exist for many IoT
devices, due to their simplicity. In addition, given the diversity
of compression (even encryption) formats, how to unpack the
obtained firmware is nontrivial as well.

When it comes to the security analysis of the files ex-
tracted from firmware, the main challenge comes from diverse
underlying architectures (memory layout, instruction set, and
so forth). Existing techniques mainly rely on emulation for
certain architectures [23], [17], [13]. However, the programs
running in the emulator will frequently crash due to unavail-
able NVRAM parameters. Some other related studies utilize
symbolic execution to analyze firmware. This attempt is also
impeded by the architecture issue. For example, FIE [21] only
supports the security analysis of firmware images built on the
TI MSP430 microcontroller family, and FirmUSB [31] only
supports 8051 architecture.

Our Approach. Unlike traditional embedded devices, most
IoT devices are controlled by users through mobile applica-
tions (loT app for short). Such an IoT app is designed to
act as its device’s phone-side control panel, and therefore
carries rich information about the device, particularly the way
to talk to its firmware. Examples of such information include
command (seed) messages, URLs, and encryption/decryption
schemes that embedded in the app. Based on this observation,
in this paper, we present IOTFUZZER, an automatic, black-
box fuzzing framework designed specifically for detecting
memory-corruption flaws in IoT firmware. A unique property
of TOTFUZZER is that it runs a protocol-guided fuzz and
utilizes the information carried by the IoT app without reverse-



engineering the protocol or explicit recovering such knowledge
from the app, as prior approaches [20], [10] do. Instead, it
performs a dynamic analysis to identify the content inside the
app that forms the messages to be delivered to the target device,
and automatically mutates such content during the runtime
so as to use the app’s program logics to produce meaningful
test cases for probing the target firmware. This approach turns
out to be not only lightweight, avoiding heavyweight protocol
analysis, but also reliable, capable of generating effective test
payloads even in the presence of cryptographic protection
(encryption, authentication, etc.).

On the other hand, IOTFUZZER is not designed to precisely
locate software flaws [43], [44]. Like other fuzz tests, all it
does is to report the presence of the problem, through a crash
triggered by a test case, which is used to guide the follow-up
security analysis to find out the root cause of the flaw.

In our research, we implemented a full-featured prototype
of IOTFUZZER and deployed it in a real-world environment.
To evaluate its effectiveness, we ran our implementation on 17
popular IoT devices. IOTFUZZER successfully discovered 15
serious memory vulnerabilities on 9 devices, and 8 of them
were previously unknown. We have reported all these new
vulnerabilities to the corresponding vendors, and some of them
has released firmware updates.

Contributions. We summarize the contributions of the paper
as follows:

e New framework. We present the first firmware-free
fuzzing framework, IOTFUZZER, for security analysis
of IoT devices. By utilizing the information carried
by official mobile apps and their program logics,
IOTFUZZER could automatically detect memory cor-
ruption vulnerabilities in IoT devices without direct
access to the firmware.

o New techniques. We developed a set of new techniques
to enable an automatic, blackbox IoT fuzzer, which in-
cludes protocol-guided fuzzing without protocol spec-
ifications, in-context cryptographic and networking
function replay for message generation and delivery,
and a lightweight mechanism to remotely monitor the
target IoT device’s status.

o Implementation and findings. We implemented a full-
featured prototype of IOTFUZZER and evaluated it
over 17 real-world IoT devices. Our study discovered
15 security-critical memory vulnerabilities, with 8 of
them never reported before.

Roadmap. The rest of this paper is organized as follows.
Section II gives the background of firmware analysis and our
insights of IOTFUZZER with a running example. Section III
presents the detailed design of IOTFUZZER. The evaluation
results are summarized in Section IV. Section V discusses
some limitations of the current design and the possible im-
provements. Section VI reviews the related work, and finally
Section VII concludes this paper.

II. BACKGROUND

In this section, we briefly introduce the typical IoT com-
munication architecture in Section II-A and summarize the
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Fig. 1: Typical smart home communication architecture

obstacles of performing security analysis on IoT devices in
Section II-B. Then, we provide our motivation and insights to
I0TFUZZER, as well as the practical challenges in developing
IOTFUZZER in Section II-C. Finally, we discuss the testing
scope and assumptions in Section II-D.

A. TDypical IoT Communication Architecture

In a typical IoT ecosystem (like the smart home envi-
ronment, as shown in Figure 1), several smart devices are
deployed by user for specific purposes. Generally, these de-
vices are equipped with many sensors for external information
collection, and a wireless connection module for data transmis-
sion. To facilitate the user’s operations, IoT device vendors
tend to provide the corresponding smartphone applications,
called IoT app, as the control node. After pairing with IoT
devices, such IoT app could send control commands to the
IoT devices to change system settings or obtain running
status data. The communication modes between an IoT device
and an IoT app could be a direct connection (e.g., Wi-Fi,
Bluetooth, and ZigBee) or a delegate connection through a
wireless router (i.e., connected to the same Wi-Fi network).
Also, some vendors provide extra cloud services to support
remote device management and data storage. In such cloud-
aided architecture, the device and/or IoT app will connect to
the cloud server through the Internet.

In this paper, we focus on the local connection modes
(direct connection and delegate connection) through Wi-Fi for
universality, and our methodology can be extended to other
communication channels (e.g., Bluetooth and Zigbee) easily.

B. Obstacles in Firmware Analysis

IoT devices typically run special software (also called
firmware) providing system control, status monitoring, data
collection, etc. The firmware is usually highly customized to
suit the hardware chips with limited computing and memory
resources. Due to its closed source and architectural diversity, it
becomes extremely challenging to perform firmware analysis
even with plenty of manual efforts. Here we summarize the
obstacles of (manually or automatically) analyzing firmware.



e  Firmware Acquisition. In some previous work [16],
[13], researchers developed targeted web crawlers to
collect firmware images from vendors’ websites. How-
ever, in fact, many vendors do not explicitly provide
images online for end users. On the other hand, hard-
ware hackers try to dump firmware images or export a
console using debugging port (e.g., JTAG interface).
Nevertheless, more and more manufacturers tend to
disable the debugging ports before production delivery
to prevent hardware-based cracking. Therefore, if the
vendors do not provide firmware or disable the debug-
ging port on IoT devices, acquiring firmware images
will be difficult. Naturally, all further firmware-based
analysis would be in vain.

e  Firmware Unpacking. Once we obtain the firmware
images, the next step is to unpack them and extract
the contained files. The immediate obstacle is the
diversity of firmware formats. Moreover, the firmware
images are usually compressed or even encrypted,
Which makes things worse. Though the standard com-
pression algorithms can be handled by Binwalk [22]
or FRAK [18], researchers still have no clue to deal
with proprietary compression algorithms or encryption
algorithms without the secret keys.

e  Executable Analysis. For the security analysis of the
extracted files from firmware images, the main diffi-
culty lays on the non-unified underlying architectures.
To minimize the power consumption and material cost,
different specifications of processors are adopted to
develop specific IoT devices. As a result, the process
of static binary executable analysis involves lots of
manual, repetitive efforts, like adjusting load offsets
and handling disassembling errors. On the other hand,
for automated analysis, static bug search approaches in
firmware with pattern matching [34], [26], [25] (e.g.,
memory safety bugs) can be quite inaccurate. Those
approaches only search for similar functions and need
a detailed description of the existing vulnerability. It
can be difficult to describe memory corruptions be-
cause they may require points-to relations for pointers.
In the aspect of dynamic analysis, one way is to em-
ulate the program in the corresponding IoT device by
separating the emulation with the real hardware [47],
which requires the support of debugging ports (e.g.,
UART, JTAG). The other way is to run the program
in an isolated emulator. However, it can be difficult
without NVRAM parameters. Security analysts need
to repetitively hijack certain functions to bypass ex-
ceptions so that the program can be executed. This
process may not always be feasible, and it is very
time-consuming.

Our Approach. In terms of discovering new vulnerabilities,
the direct firmware analysis is very challenging. Thus we
need to seek alternative approaches to automatically discover
vulnerabilities in IoT devices. Our key observation is derived
from the IoT communication architecture as illustrated in
Figure 1: different from the traditional embedded devices,
the IoT app plays an important role in interacting with IoT
devices. Based on this observation, we find that the IoT app

can be utilized as a client to test closed source IoT devices,
and it is the node of sending testing messages. Such a design
avoids the difficulties and tedious work in reverse engineering
binary executables when discovering new vulnerabilities. As
a result, this discovery motivates us to design a mobile app-
based fuzzing framework.

Meanwhile, the preliminary results of our feasibility study
also support the practicability of such design. We reviewed
the official documents of randomly-selected 63 IoT devices
on IOTLIST [2], and 61 of them are equipped with the
corresponding mobile IoT apps (either iOS or Android).

C. Challenges in IOTFUZZER Design

In this paper, we present IOTFUZZER, an automated
protocol-guided fuzzing framework which could send probing
messages to [oT devices to trigger memory corruption vulner-
abilities. Based on the fact that nowadays there is no popular
and dominant protocol standard for IoT devices, IoT vendors
tend to design customized data formats and protocols to
meet the customized product requirements. Also, some of the
vendors even use non-standard encryption functions to encrypt
messages. Therefore, in order to generate protocol-guided and
cryptographic consistent messages from IoT apps, we need
to follow the protocol formats and encryption schemes of the
corresponding devices. Though the existing technique, Aut-
oForge [50], enables the forgery of cryptographic-consistent
messages at client side by reimplementing cryptographic func-
tions out-of-the-box, it does not suit for the IoT apps in our
case. The reason is that it only works for standard protocols
(like HTTP) and can not handle private cryptographic func-
tions. To illustrate the challenges that motivate our solutions,
we show a running example as follows.

A Running Example. To better understand the problem, we
use a typical IoT app, TP-Link Kasa [6] as a running example.
This IoT app is designed to control multiple smart home
devices produced by TP-Link, including Wi-Fi smart plug,
smart bulb, Wi-Fi extender, etc. Moreover, the variable names
and class names are obfuscated in this IoT app to prevent
reverse engineering. In the decompiled code snippet shown in
Listing 1, there are two functions: one is used for constructing
a request message to set the current location of the IoT device
at line 2; the other function at line 17 is used for encrypting
the output messages.

// Message construction
:|public final ControlResult a(...) {

Object localObject = new com/tplink/
smarthome/b/e;

((e)localObject) .<init> ("system");

|g localg = new com/tplink/smarthome/b/g;

localg.<init> ("set_dev_location");

o

localg.a("longitude", localDouble);
localDouble = Double.valueOf (paramDoublel) ;
1| localg.a("latitude", localDouble);

3| return (ControlResult)localObject;

4]}

16| //Message encryption
7|public static byte[] a(byte[]
paramArrayOfByte) {




19 k = paramArrayOfBytel[j];
20 i = (byte) (i " k);

21 paramArrayOfByte[j] = 1i;
i = paramArrayOfBytel[]j];
j +=1;

return paramArrayOfByte;

Listing 1: Example Code from TP-Link IoT App

Particularly, the communication between this app and the
smart device is encrypted by the non-standard encryption
function byte[] a (byte[]) atline 17, and the constructed
plaintext message before passing to the encryption function is
as below.

{"system":{"set_dev_location":{"longitude
":10.111213141,"latitude":51.617181920}}}

To achieve protocol-guided fuzzing of such a message,
we wish to mutate the protocol fields (e.g., “system” and
“set_dev_location”) in the message before the message
encryption. One possible approach is to fuzz the generated
message following the target protocol specifications (e.g.,
HTTP with XML or JSON). However, such an approach cannot
be generalized for unknown protocols. On the other hand,
automatic extracting and replaying the cryptographic functions
are difficult because we have to re-implement the functions
and locate the (hardcoded or pre-shared) keys. When facing
obfuscation, such a task will become more difficult.

Challenges. Therefore, in order to generate fuzzing messages
without making assumptions on protocol formats, we need to
solve the following challenges.

e  Challenge 1: Mutating fields in networking mes-
sages. A fuzzer is “smart” if it has the knowledge
of protocol format. The format distinguishes valid
input from invalid input that is easily rejected by the
program. However, nowadays IoT vendors use specific
protocols in their products (as can be seen from the
statistics in Table I). While it might be easy to fuzz
messages with well-known protocols, it is challenging
to fuzz messages with unknown ones. Therefore, we
need to automatically recognize and fuzz the protocol
fields for unknown protocols.

e  Challenge 2: Handling encrypted messages. If the
communication between an IoT device and an app is
encrypted, our framework has to send the encrypted
probing (mutated) messages in the same way (with
the correct keys). While we could identify the crypto-
graphic functions in the app, search for the key, and re-
implement them out-of-box. It will become extremely
difficult when facing complex obfuscated codes and
non-standard encryption schemes (with library depen-
dencies). Thus, we need a lightweight and flexible
solution to reuse the message encryption functions in
the app.

e  Challenge 3: Monitoring crashes. Once a memory
corruption is triggered by a mutated message, we do

not know the real-time status of the IoT device, like
whether the program has crashed, and which message
has caused the crash. The reason is that we cannot
locally monitor the running process in the system.
Besides, the IoT devices have different application
layer protocols with distinct exception handling mech-
anisms, so it is difficult to automatically identify the
crash based on the semantics of the error messages.
Even worse, on some devices, there are watchdogs to
detect and recover the malfunctioned program from
the crash. In order to identify the system crash and
the corresponding probing message that triggers the
crash, we need to design an effective mechanism to
remotely and automatically monitor the device status.

Solutions. As previously mentioned, if we intend to perform
protocol-guided fuzzing, we need to recognize the protocol
fields and understand the protocol formats. However, for
unknown formats, protocol reverse engineering may be quite
challenging. Additionally, it is difficult to reuse the encryption
functions due to various obfuscations. Fortunately, we have ob-
tained the following insights to address the above challenges.

e Mutating protocol fields at data sources. Since pro-
tocol reverse engineering for unknown protocols is
expensive, we can mutate the data which is used in
the protocol message (note that most of these data
will be strings) at their sources (e.g., at data definition
sites or some data use sites such as when passed
as arguments to functions). Then correspondingly,
following the original program logic, these mutated
strings will eventually become protocol fields.

e  Reusing cryptographic functions at runtime. Since
we have modified the data sources at the very be-
ginning, the normal program execution will help us
complete the message encryption procedure and gen-
erate ready-to-send messages. Therefore, we do not
need to re-implement the complete encryption logic
out-of-the-box.

e  Detecting liveness with heartbeat mechanism.
Though we cannot monitor the status of the running
device locally, we can infer whether the program or the
system is alive by sending a heartbeat message. The
heartbeat message can be any messages that query the
status of the device.

D. Scope and Assumptions

The design goal of IOTFUZZER is to automatically gener-
ate protocol-aware fuzzing messages to the IoT devices from
IoT apps and try to discover memory corruptions in firmware
images. Therefore, we require the IoT devices under testing
could be configured and controlled by the corresponding mo-
bile apps. Also, currently the communication channel between
them needs to be based on Wi-Fi, though our framework could
be easily extended to other channels with some additional
efforts. In addition, for the IoT apps, our framework currently
focuses on the Android platform for its popularity and open-
ness.



III. DETAILED DESIGN

In this section, we present the detailed design of I0T-
FUZZER as illustrated in Figure 2. At a high level, there are two
phases in IOTFUZZER: app analysis phase and fuzzing phase.
In the app analysis phase, it takes an IoT app as the input,
analyzes the UI for network event triggering, and tracks the
propagation of application protocol related fields. After those
steps, IOTFUZZER has recorded all protocol fields and the
corresponding functions for mutation. In the fuzzing phase, our
framework mutates the interested protocol fields using dynamic
instrumentation of the IoT app and dynamically monitors the
crash of IoT devices. In the end, IOTFUZZER outputs alerts
(i.e., crash messages) indicating potential memory corruptions.
Specifically, there are four main steps to fuzz an IoT device:

1) Ul analysis: In the first step, the goal is to analyze the
code of IoT app and discover all UI components that
will lead to the sending of networking messages. With
such information, we can trigger message sending
events by driving the corresponding UI controls.
The purpose of UI analysis is to facilitate data-flow
analysis and fuzzing in the following steps.

2)  Data-flow analysis: In order to identify the program
elements (e.g., string constant, input from system
APIs, etc.) whose values are related to the content
of the message to be sent to the IoT device, we
track the data flows from a set of selected elements
(Section III-B) to find those indeed affecting some
message fields. Those program elements are then used
to mutate the content of the fields for fuzzing the
device. Note that unlike taint-based fuzzers [7], [28]
looking for the inputs of a program that can reach a
known vulnerable function (e.g., printf) inside the
program, our approach utilizes the data-flow analysis
to determine how to command the IoT app to generate
meaningful test outputs for fuzzing its remote target.

3)  Runtime mutation: Once the protocol fields are rec-
ognized, according to the fuzzing policy we defined,
I0TFUZZER mutates the original fields (e.g., original
string) at their first use sites. Then, the IoT app will
follow its normal execution logic to compute and
build the message and send it to IoT device with the
mutated data.

4)  Response monitoring: The final step is to monitor the
running status of IoT device remotely and capture the
triggered crash. For TCP-based communication, the
connection between the IoT app and the IoT device
will be interrupted, which is easy to detect. For UDP-
based communication, we use a heartbeat mechanism
to detect the crashes occurred at uncertain times.

A. UI Analysis

As the preparation for protocol field recognition and muta-
tion, we only need to focus on the events that trigger network
message delivery. Therefore, the goal of UI analysis is to
determine the UI elements that eventually lead to the message
delivery.

Generally, a typical IoT app works as follows: when we
input to the text boxes, click the buttons on the Ul, or enter
another Activity, event handler (e.g., onClick, onCreate,

onResume, etc.) will be invoked to handle the events; later,
in the event handling functions, a background thread (i.e.,
AsyncTask) is created to build the output message and
operate encryption/decryption and network functionalities. In
order to determine the Ul components that trigger network
messages, we perform static analysis to associate the Ul
elements in different activities with targeted network APIs.

Call Path Construction. We first build the call graph of the
app using Androguard [1]. Starting from the target network
communication APIs (such as URL.openConnection ()
and Socket.getOutputStream()), we construct the
backward code paths to UI event handlers. However, there are
implicit control flow transitions, such as callback relation of
thread.start and thread. run, and other event-driven
calls. Therefore, we also list and add these implicit edges,
which is obtained by system EdgeMiner [12]. The sinks of
code paths are a set of event handlers which finally send
network messages.

Activity Transition Graph Construction. In order to reach
certain activities and trigger the network sending events during
fuzzing, we need to construct the activity transition graph. To
this end, we first use Monkeyrunner [3] to interact with the
UI elements in each activity with a simple policy based on the
order of event execution. For example, the submit button will
be triggered after all the input fields are filled. Meanwhile, the
text fields will be filled heuristically according to their types
(e.g., a zip code, a telephone number, an address, etc.). After
that, we obtain a sequence of Ul events and the order of how
to trigger them. Meanwhile, we also record the events that
turn the current activity to another activity. For the events in
each activity, we filter out the ones which will not lead to the
network sending APIs according to the constructed call paths.
In the end, we construct the activity transition graph with our
recorded UI events. The node of activity transition graph is an
activity with events (or the sequences of events) that trigger
message sending APIs, and the edge is an event (or a sequence
of events) that creates or resumes an activity.

In the following procedures, we will invoke the event
handlers sequentially in our records based on the activity
transition graph. The order of event handlers that lead to
message sending APIs in each activity does not affect the
following steps (i.e., data-flow analysis and fuzzing).

B. Data-flow Analysis

In order to mutate the protocol fields during the execution,
we need to first recognize the protocol fields and record
the functions that take protocol fields as arguments. Given
the fact that command messages in IoT apps are usually
constructed with hardcoded strings, user input, or system APIs,
we use dynamic taint tracking with a modified version of
TaintDroid [24] to recognize them.

While we could mutate the network message at network
API based on known message formats, we find there is a
much easier way of just mutating them at the first data use
site without assuming message format. In particular, we can
just mutate the protocol related data when it is first used as the
argument of functions. As a result we record the functions that
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take the tainted data as argument in order to find out where to
mutate these fields.

Furthermore, we do not propagate taint to encryption
functions, since we focus on mutating the original data that
are not encoded. Thus we perform cryptographic function
identification first and then set one of the taint sinks as those
cryptographic function’s arguments, in addition to the sinks
that are the arguments of standard network sending APIs.
Also, we only record the taint propagation flows in the Dalvik
VM at the variable level and do not go deeper to the native
system libraries level (due to the limitation of TaintDroid).
Since taint analysis has been widely used, we just describe
how we customize and extend TaintDroid for our purpose.

o Taint Sources. The taint sources of our analysis
include all the strings in the IoT app (e.g., keywords
and delimiters), the system APIs frequently used in
messages (e.g., WifiInfo.getMacAddress (),
Location.getLatitude (), Location.get
Longitude ()), and the user input from UI (e.g.,
EditText.getText ()).

o  Taint Propagation. Given that the purpose of taint
analysis in our case is different from that of the
TaintDroid, and the current implementation of Taint-
Droid has limited number of sources, we therefore
modified the propagation rules to enlarge more taint
sources to meet our requirement. In particular, we use
a dictionary to store the taint tag. Whenever there is a
new tag created, we add it to our dictionary and track
the dependencies of this tag. In this way, we can hold
arbitrary number of taint tags, and exactly know how
each tag is used and propagated.

o  Taint Sinks. The taint sinks are the data uses at net-
working APIs and encryption functions we identified.
If there is no encryption involved in the network
message, the taint sinks will be those standard net-
working APIs. If there are cryptographic functions
used regardless whether it is public (developed by
the general public) or private (developed by the app

developers), we will perform a cryptographic function
identification described below to identify them.

Cryptographic Function Identification. Identifying crypto-
graphic functions during program execution is not a new
problem. There is a significant amount of prior research
in this direction. In our design, we just take the following
lightweight approach that is similar to [9], [41]: cryptographic
algorithms usually contain arithmetic and bitwise operations.
First of all, we select the functions that contain arithmetic and
bitwise operations. Even though there might be many candidate
cryptographic functions, very few of them are called during the
execution of message delivery. We then record the execution
trace of a message sending event and refine the candidate
functions based on position relative to network functions.

C. Runtime Mutation

With taint tracking, we recognize the protocol fields and
the corresponding functions they pass through. In this step,
we dynamically hook the recorded functions and mutate the
protocol field parameters at runtime to generate probing mes-
sages. Such a design brings two benefits: (1) protocol fields
can be fuzzed before they get encoded or encrypted; (2) the
fields of unknown protocols can be fuzzed without protocol
reverse engineering.

Function Hooking. During the app execution, the tagged
variables are passed to a set of functions. In the data-flow
analysis, we only need to record the first passed function
as well as its calling context because mutation at the first
function is enough to change the tagged variable’s value in
the succeeding program logic. Note that most of the protocol
fields are hardcoded strings defined in the code, and developers
rarely sanitize the passed parameters. Then we perform de-
duplication and get the unique set of these recorded functions
and dynamically hook them with Xposed [37] framework.
After that, the original values passed to the hooked functions
can be replaced by the mutated values.
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In the running example of Section II-C, after taint tracking,
we tag the source string variables (most of the data sources
are hardcoded strings) as follows:

"system",
"latitude",

"set_dev_location", "longitude",
10.111213141, 51.617181920

The recorded functions related to the tag variables are
(partially shows as below):

com.tplink.smarthome.b.e.<init> (String)
com.tplink.smarthome.b.g.<init> (String)
com.tplink.smarthome.b.g.a(String, Object)

Then we hook these functions and mutate their correspond-
ing taint tagged arguments. Particularly, we require the hooked
function to be context-sensitive (i.e., it is only triggered at
certain context). For instance, if we hook Java APIs (e.g.,
valueOf ()), other parts of the program will be affected if
we do not consider the context.

When tagged variables are passed to the function with
the parameter Object, we also hook this function and mu-
tate the type of the incoming variable. For example, when
g.a("longtitude", 12.3) isinvoked (the function sig-
nature is g.a (String, Object)). We hook and fuzz it as:
g.a("longtitude", "a random string"). Particu-
larly, we can mutate the passed fields with different strategies
based on the incoming values, even though the same function
may be invoked many times for different protocol fields (e.g.,
g.a(String, Object)). Note that a protocol field may be
fuzzed several times if it is passed to several hooked functions,
and the same function may be hooked to fuzz several protocol
fields (as shown in Figure 3). Nevertheless, it will never
incur too much burden on the performance since mutating is
absolutely based on function hooking.

Fuzzing Scheduling. When a hooked function mutates the
field, we do not know whether the protocol field is already
fuzzed. To schedule the fuzzing process, we assign mutations
to function parameters using the algorithm as shown in Algo-
rithm 1. Assigning of mutations is conducted before each event
handler is triggered. For each message, we want to randomly
select a subset of fields to mutate instead of mutating all the
fields (because the message with all the fields being mutated
can be easily rejected by the device). In particular, firstly, we
extract the parameter set P from all hooked functions. Then
we randomly generate the total mutation amount s which is
a positive integer less than ¢ (the number of identified fields
in message M). Such a requirement is to decrease the chance
of mutating all fields by limiting the number of mutations to

Algorithm 1: Random Fuzzing Algorithm

Input: c: number of identified fields in message M
F: set of hooked functions
Output: 7: number of mutations for each protocol field
parameter of F’
1 P={p1, p2, ..., pn} = extract_param(F) ;
// get parameter set
2 n = count(P) ;
3 s = random_gen(c) ;

// get the number of parameters

// randomly generate s,

(0<s<c)
4 T={ty, ta, ..., t,} = get_solution(t; +to + ...+
tn = Q N // calculate one group of solutions
5 output T'

less than the number of message fields for each execution.
Finally, we calculate a group of valid solutions for equation
ti +to+---+1t, = s (t and s are integers), in which ¢,
is the mutation amount assigned to parameter field p,. The
solutions to that equation are not unique, and we just randomly
select one valid group. Since the real-time amount of invoked
functions is not available at runtime, picking a random valid
group is a non-biased solution. This policy can be flexible to
suit different scenarios such as emphasizing mutation times for
certain functions or protocol fields.

Fuzzing Policy. In general, there are mainly two types of
fuzzing strategies [39]: generation-based fuzzing and mutation-
based fuzzing. The former requires the understanding of pro-
tocol formats and generates inputs from scratch with structure
information, to avoid being directly rejected. The latter only
mutates the existing seed inputs with the type information.
Since the runtime mutation of protocol field is inherently
input structure aware, we can achieve a fuzzing strategy with
structure and type information by adopting the following
heuristic mutation rules for the fields':

1)  Changing the lengths of strings for stack-based or
heap-based overflow and out-of-bound access. In our
implementation, IOTFUZZER duplicates the original
strings several times (from dozens to thousands) or
appends a variable number of character "A" to the
original string to construct malformed messages.

2)  Changing the integer, double or float values for
integer overflow and out-of-bound access. Therefore,
we mutate the original values into boundary cases
and very-large values. Also, to trigger the cases of
miscounting of boundary conditions, we also generate
the off-by-one values for potential off-by-one error.

3)  Changing the types, or providing empty values for
misinterpretation of the value and uninitialized vari-
able vulnerability. For example, if a string value is
replaced with an integer value, a null pointer derefer-
ence may be triggered (as the case of Section IV-EI).
In the implementation of [OTFUZZER, we mutate the
types of Object at the Java level of Android apps.

Note that though the mutation is based on Java programming language, the
mutated values are targeting at the memory corruptions in binary programs.



D. Response Monitoring

When the fuzzing message has been received by the target
IoT device, we still need to know whether it triggers any
abnormal behaviors (like system crashes). Therefore, in this
last step, we focus on monitoring the running status of the
device.

Given that we cannot monitor the system processes locally,
the device status information can only be obtained or inferred
from the responses answered by the IoT devices. Overall,
the possible responses can be classified into the following
categories:

1)  Expected Response. In this case, the probing mes-
sages are handled properly by the IoT device, and
no exception occurs. Such a situation is out of our
interests.

2)  Unexpected Response. The probing messages go be-
yond the intended logic of the program (e.g., reaching
the input parameter boundary), and trigger untreated
errors.

3)  No Response. When no response is answered for a
certain probing message, it may either trigger a DoS
vulnerability, or it is just an error handled locally
without replying, or running in a dead loop.

4)  Disconnection. For connection-oriented communica-
tion protocol like TCP, the network connection will
be interrupted when a system crash is triggered by
the probing message.

In our IOTFUZZER framework, we focus on detecting
memory corruptions that cause system crash. However, manual
understanding of the response can be time-consuming and
may not be able to monitor the status remotely. Therefore,
based on the above listed four types of responses, we use a
targeted crash detecting mechanism for different transport layer
communications between the IoT device and the IoT app. More
specifically:

e  For TCP-based connection, we simply infer whether
the system crashed or not by looking at the connection
status (since TCP is a connection-based protocol).

e  For UDP-based connection, if the program or the
system is crashed, then there will be no response
sent back to the IoT app. We need to determine
that the no response is caused by a crash or it is
just an internally handled error. To distinguish such
two cases, we use a heartbeat insertion mechanism.
In particular, we first extract a heartbeat message
from the IoT app, which is used to detect whether
the device is alive. Heartbeat messages are extracted
based on the analysis about network functions as
well as a differential analysis over network traffic
with and without user’s interactions with the paired
app. Then, during the fuzzing, we insert a heartbeat
message for every ten (note that this number can be
easily changed, and it just affects how long we should
wait for the heatbeat response) probing messages for
a liveness detection. Under such configuration, ten
probing messages can be sent within seconds, which
is tolerable with the watchdog daemon. If there is no
response to answer the heartbeat message, then we can

confirm that a crash is triggered by one of previous
ten probing messages. Then we will do a further check
to locate the exact probing message that triggers the
crash.

IV. IMPLEMENTATION AND EVALUATION

In this section, we present the prototype implementation
of IOTFUZZER and analyze the evaluation results. Partic-
ularly, Section IV-A gives the implementation details, and
Section IV-B introduces the experiments setup (the devices and
the testing environment). In Section IV-C and Section IV-D, we
discuss the effectiveness and efficiency of IOTFUZZER based
on the evaluation results. Finally, two vulnerable devices are
analyzed deeply to demonstrate how IOTFUZZER could help
security analysts to locate the vulnerabilities in firmware.

A. Framework Implementation

We have implemented a full-featured prototype of 10T-
FuzzeErR with around 9,100 Java lines of code and 1,400
Python lines of code in total. Also, we integrated several open-
source projects (e.g., Xposed and TaintDroid) into IOTFUZZER
to avoid reinventing the wheel.

For the app analysis phase, we implement call path con-
struction and automatic activity transition with Androguard [1],
EdgeMiner [12] and Monkeyrunner [3]. Then we rely on
Xposed Module [37] and Monkeyrunner to trigger network
events for taint analysis and subsequent message delivery
operations. During this step, Xposed provides an excellent tool
with method hooking and replacing functionalities. Moreover,
we implement taint tracking with TaintDroid [24] by extending
its taint source and taint tracking policy (as described in
Section III-B). Finally, the outputs (i.e., functions) of taint
tracking are written into configuration files for the further
usage.

For the fuzzing phase, the core functionalities (scheduling,
mutation and crash monitoring) are implemented by creating
an analysis thread in Xposed during app execution. Also, the
configuration files are preloaded to provide the information
of target functions. Note that the analysis thread is designed
to schedule the fuzzing through assigning mutation quotas to
each hooked function, and the mutation is still performed in
the original threads of the app.

Crash Triage. It should be noted that some of the confirmed
crashes are triggered by the mutated messages of the same
seed messages with minor differences (different instances but
could trigger the same bug). Therefore, in the implementation
of IOTFUZZER, we also record the relationship of each seed
message and mutated message pair, which could help us
triage the crash messages. As a result, when we obtain a
set of crash messages produced by I0TFUZZER, we could
compare them with the corresponding seed messages to locate
the mutated fields and further confirm the vulnerabilities in
firmware images.

B. Experiment Setup

IoT Device Selection. We selected 17 representative IoT de-
vices from different categories, especially smart home devices,



Fig. 4: ToT Devices Used for Our Experiments

including network-attached storage (NAS) device, IP camera,
smart bulb, smart plug, printer, home router, etc. These devices
are best-selling products offered by mainstream manufacturers,
and rank top few in each category on Amazon. All of those
devices could be operated by the official IoT mobile apps
through local Wi-Fi network. There is no restriction on the
communication protocols and the data transmission formats.
Also, while we could have performed test with more devices,
we have to note that each device costs our research budget
and therefore only 17 devices were purchased due to limited
resources.

The detailed specifications (type, vendor, model, and
firmware version) of selected testing devices are described in
Table I. In particular, we summarize their official IoT app in-
formation and communication protocols & formats (encryption
or not). To deliver the direct impression of these devices, we
also give their pictures in Figure 4.

Testing Environment. Our IoT UI analysis runs on a Ubuntu
14.04 PC with Intel Core 17 quad-core x 2.81 GHz CPU and
8 G RAM, and taint tracking runs on Google’s Nexus 4.

For the fuzzing experiment environment, we configured the
IoT devices under testing on a fully-controlled local Wi-Fi
network setup by us, which avoids the interference of irrelevant
traffic and unwanted package filtration of the firewall. After
the device initialization, we paired these devices with the
corresponding IoT apps installed on the smartphone. The
smartphone is connected to the same wireless LAN.

C. Effectiveness

By performing fuzz testing on 17 IoT devices with our
automated framework IOTFUZZER (each device is set to run
for 24 hours), we found 15 serious vulnerabilities (memory
corruptions) in 9 devices. As can be seen in Table II , these
include 5 stack-based buffer overflows, 2 heap-based buffer
overflows, 4 null pointer dereferences and 4 crashes that we
further checked after they are identified by the IOTFUZZER.

All of these memory corruptions that we discovered with
IOoTFUZZER are of high impacts. They can either cause
these best-selling devices out of service or be exploited and
controlled by the attackers with one single message. Within
those vulnerabilities that we have confirmed, seven (46.7%) of
them are remotely exploitable. As a result, the attackers can
make the Brother printer out of service (by only knowing the
IP address) or crash the TP-Link Smart plug (with details in
Section IV-E1).

Compared with the traditional approaches that discover
vulnerabilities through firmware analysis with symbolic ex-
ecution and firmware emulation respectively (like FIE [21]
and Firmadyne [13]), IOTFUZZER adopts a firmware-free
methodology and is much more efficient. After all, perform-
ing firmware emulation requires lots of manual efforts, and
program analysis techniques could be inaccurate in identifying
memory corruptions across different firmware architectures (as
shown in Section IV-E1). Moreover, it is required to dig deep
down to the program logic and the lowest level of binary code.
In contrast, IOTFUZZER achieves an efficient protocol-guided
fuzzing of inputs without heavy workload of firmware analysis.

D. Efficiency

Fuzzing Efficiency. We measure the efficiency of fuzzing in
terms of crashes discovered over time and crashes over number
of test cases. As can be seen in Table III, we compare 10T-
FUZZER with default configured open source network protocol
fuzzers: Sulley [27] and BED [5]. Sulley is a framework which
can mutate general request and watch the network, and BED
is a program which is designed to check daemons for potential
buffer overflows and format strings. Note that we believe both
two fuzzers are fairly treated because they are both designed
for general requests such as URL and HTTP. Additionally, they
can both automatically identify the specifications of general
protocols (e.g., HTTP headers). In the experiment, we feed
mutation-based fuzzer Sulley with seed messages generated
from the app. Since BED supports a set of standard protocols,
we use BED to test general HTTP protocol. To compare the
efficiency with IOTFUZZER, we reconfigured Sulley and BED
to make them run for 24 hours. Additionally, when a crash
is detected during the experiment, we resume the testing by
resetting the IoT devices.

From Table III, we can see that IOTFUZZER generally
surpasses popular open source fuzzers regarding both test time
and the number of test cases. It identified 15 memory corrup-
tions taking only 52.79 hours with 184159 fuzzing messages
in total. In particular, IOTFUZZER discovered 3 null pointer
dereferences by reusing original encryption functions in the
app. Both Sulley and BED cannot handle such tough cases.
However, IOTFUZZER has to take more time to test when
the vulnerability is triggered by accessing a mutated URL.
Furthermore, regarding detecting Buffer Overflow 3 and Crash
3, BED performed better than our framework because both
vulnerabilities occur in HTTP headers and BED is designed
for such vulnerability types.

In addition to that, in Table IV, the performance of UI
analysis is presented. Based on such statistics, we could find,
in most apps, the amounts of network events and activities are
quite small, which means most IoT apps only have relatively



TABLE I: Summary of IoT Devices under Testing

Device Type Vendor Device Model Firmware Official Mobile App (Android’) Protocol and Format
Version (Encrypted: Yes/No)

IP Camera D-Link DCS-5010L 1.13 com.dlink.mydlinkmyhome HTTP, K-V Pairs (N)
Smart Bulb TP-Link LB IOQ 1.1.2 com.tplink.kasa_android UDP, JSQN (Y)
KONKE KK-Light 1.1.0 com.kankunitus.smartplugcronus UDP, String (Y)

Belkin Wemo Switch 2.00 com.belkin.wemoandroid HTTP, XML (N)

Smart Plug TP-Link HS110 v1_151016 com.tplink.kasa_android TCP, JSON (Y)
D-Link DSP-W215 1.02 com.dlink.mydlinkmyhome HNAP, XML (N)

Printer Brother HL-L5100DN Ver. E com.brother.mfc.brprint LPD & HTTP, URI (N)
.. My Passport Pro 1.01.08 com.wdc.wd2go HTTP, JSON (N

NAS Western Digital M§ oo 227126 e HTTP, JSON EN;
QNAP TS-212P 422 com.gnap.gmanager HTTP, K-V Pairs (N)

TIoT Hub Philips Hue Bridge 01036659 com.philips.lighting.hue HTTP, JSON (N)
NETGEAR N300 1.0.0.34 com.dragonflow HTTP, XML (N)

Home Router Linksys E1200 2.0.7 com.cisco.connect.cloud HNAP, XML (N)
Xiaomi Xiaomi Router 2.19.32 com.xlaomi.router HTTP, K-V Pairs (N)

Story Teller Xiaomi C-1 1.2.4_89 com.xiaomi.smarthome UDP, JSON (Y)
Extension Socket KONKE Mini-K Socket sva.l.4 com.kankunitus.smartplugcronus UDP, String (Y)
Humidifier POVOS PW103 v2.0.1 com.benteng.smartplugcronus UDP, String (Y)

Remarks: All IoT apps mentioned in this table could be obtained from Google Play.

TABLE II: Summary of Discovered Vulnerabilities

Device Vulnerability Type # of Issues Remotely Exploitable?
Belkin WeMo (Switch) Null Pointer Dereference 1 No

TP-Link HS110 (Plug) Null Pointer Dereference 3 No

D-Link DSP-W215 (Plug) Buffer Overflow (Stack-based) 4 Yes

WD My Cloud (NAS) Buffer Overflow (Stack-based) 1 Yes

QNAP TS-212P (NAS) Buffer Overflow (Heap-based) 2 Yes

Brother HL-L5100DN (Printer) Unknown Crash 1 Not determined
Philips Hue Bridge (Hub) Unknown Crash 1 Not determined
WD My Passport Pro (NAS) Unknown Crash 1 Not determined
POVOS PW103 (Humidifier) Unknown Crash 1 Not determined

TABLE III: Statistics on

Fuzzing — Test Time and Number of Cases

Vulnerability Device IoTFUZZER Sulley BED
Null Dereference 1 TP-Link HS110 0.71 h (2517) NA NA
Null Dereference 2 TP-Link HS110 1.56 h (7068) NA NA
Null Dereference 3 TP-Link HS110 4.38 h (14839) NA NA

Null Dereference 4

Buffer Overflow 1 (Stack-based)
Buffer Overflow 2 (Stack-based)
Buffer Overflow 3 (Stack-based)
Buffer Overflow 4 (Stack-based)
Buffer Overflow 5 (Stack-based)
Buffer Overflow 6 (Heap-based)
Buffer Overflow 7 (Heap-based)

Belkin WeMo
D-Link DSP-W215
D-Link DSP-W215
D-Link DSP-W215
D-Link DSP-W215

WD My Cloud

QNAP TS-212P
QNAP TS-212P

19.52 h (62424)
3.22 h (9392)

3.34 h (14696)
4.50 h (11110)
10.85 h (42478)
5.49 h (20323)
2.95 h (10068)
327 h (11811)

>24 h (309985)
>24 h (314297)
>24 h (314297)
>24 h (314297)
>24 h (314297)
>24 h (333255)
>24 h (286552)
>24 h (286552)

>24 h (30274)
>24 h (28131)
>24 h (28131)
0.87 h (1249)
>24 h (28131)
>24 h (28493)
>24 h (29319)
>24 h (29319)

Crash 1 Brother HL-L5100DN 0.23 h (1021) 0.15 h (2034) 0.21 h (359)
Crash 2 Philips Hue Bridge 1.70 h (7415) >24 h (308424) >24 h (31810)
Crash 3 ‘WD My Passport Pro 3.24 h (11016) >24 h (323848) 0.28 h (453)
Crash 4 POVOS PW103 4.11 h (12832) NA NA

NA: not applicable for encrypted messages; >24 h: not found in 24 hours

simple logic. In Table V, we give the statistics of taint tracking
(the numbers of identified fields, identified messages, and
hooked functions). From this table, we could find the values for
their devices are various due to different firmware and protocol
implementations. For some apps (IoT devices), the number of
hooked function is small because some functions are frequently
used during message construction.

Fuzzing Accuracy. In Figure 5, we show the number of
crashes reported by IOTFUZZER and the number of crashes
we confirmed among them. This bar chart demonstrates that
some IoT devices were actually poorly designed and network
reliability cannot be fully guaranteed. As a result, the absence
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of heartbeat responses from the device or disconnection of
TCP-based connections could be caused by unpredictable
communication errors in the experiment. This phenomenon is
the main cause of false positives existing in our results. To
remove these false positives, we resent every non-responding
mutated messages to the device to double confirm whether the
target indeed crashed.

E. Case Studies

1) TP-LINK Wi-Fi Smart Plug: TP-Link corporation re-
leased the HS110, a Wi-Fi smart plug with energy monitoring
for residential use. Through the official control app - TP-
Link Kasa, the user can read the real-time power consumption
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TABLE V: Statistics of Taint Tracking . .
Fig. 5: Fuzzing Accuracy
IoT Device # of Identified # of Identified # of Hooked
Fields Messages Functions
D-Link DCS-5010L 258 11 23
TP-Link LB100 167 19 16
KONKE KK-Light 94 22 12 {"schedule": {"add_rule": {"stime_opt":0, "wday
Belkin Wemo Switch 393 18 16 w. n " Cw. T
TP-Link BISTI0 19 39 3 ".[1;0,0,1,%,0,?],Ism1n .%014,"enab%e"
D-Link DSP-W215 364 6 71 :1,"repeat":1,"etime_opt":-1, "name":
Brother HL-L5100DN 4 2 2 lights on","eact":-1, "month":0,"sact":1,"
WD My Passport Pro 46 8 5 year":0,"longitude":0,"day":0,"force":0,"
WD My Cloud 40 8 S latitude":0, "emin":0}, "set_overall_enable
QNAP TS-212P 391 2 9 . (Menable":13}}
Philips Hue Bridge 933 24 13 : :
NETGEAR N300 956 18 17
)L(‘.“ksy.s £1200 03 2 12 When the mutated messages are delivered to the Wi-Fi
iaomi Router 1082 33 11 N . : . ! .
Xiaomi Story Teller 357 7 3 smart plug, the device will blink in red and denies any valid
Mini-K Socket 104 19 9 messages. We further checked and confirmed that these iden-
POVOS PW103 89 25 8

data conveniently. This device can be accessed via local Wi-Fi
network or the Internet. Even though such a device provides
basic switch on/off functionality with energy monitoring and
scheduling, it plays a safety-critical role: it determines the
on/off status of any appliance that plugs on it. Attacker can
power on/off the appliance through switching on/off the Wi-Fi
smart plug.

We start the testing with Ul analysis and taint tracking,
then IOTFUZZER starts to perform runtime mutation. To show
the original message and the fuzzed message, we record the
original field and the mutated field at each hooked function.
Also, we dump the plaintext of output message before the
encryption function. After around 43 minutes, IOTFUZZER
produced a crash with the following output message:

{"schedule":{"add_rule":{"stime_opt":4095,"
wday":[11,0,0,1,1,0,0], "smin":"A... (Ax10)
...A","enable":254, "repeat":"A... (Ax100)

LLWA", "0, "name" : 0, "eactttttttttt
":-1,"":0,"sacttttt":1,"year":0,"
longitude":"A... (Ax10)...A","day":0,"
force":0,"latitude":"A... (Ax10)...A","

emin":0}, "set_overall_enable": {"enable
":1}}}

The original message is:
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tified vulnerabilities are triggered by the use of uninitialized
pointers through complicated firmware analysis. The binary
code is in MIPS and shown as below.

1| 0x00423F14: 1lui $al, 0x5C
2| 0x00423F18: 1w Sv0, 0x14($v0)
3| 0x00423F1C: 1la $t9, cJSON_GetObjectItem
/| 0x00423F20: sw Sv0, 8($sl)
5| 0x00423F24: 1la $al, aName_2
6| 0x00423F28: jalr s$t9 ;
cJSON_GetObjectItem
0x00423F2C: move $a0, $s4
s| 0x00423F30: 1w $Sgp, 0x38+var_28($sp)
9| 0x00423F34: beqgz Sv0, loc_42469C
10| 0x00423F38: nop
111 0x00423F3C: 1la $t9, strncpy
2] 0x00423F40: 1w $al, 0x10($v0)
13| 0x00423F44: addiu $a0, $sl1, 0x35
14| 0x00423F48: jalr $t9 ; strncpy
15| 0x00423F4C: 1i $a2, 0x20
16| 0x00423F50: 1w $Sal, 0($sl)
17| 0x00423F54: 1w Sgp, O0x38+var_28(S$sp)
15| 0x00423F58: beqgz $Sal, loc_42469C

From the above binary code, we can see that standard
C library function strncpy () is invoked (with register al
and a0 as arguments) at line 14. Before the invocation of
strncpy (), at line 12, argument al is assigned by the



memory content at vO with offset 0x10, which is a pointer
points to the expected string in the CTJSON struct. When
we provide integer value 0 instead of a string (e.g. “’lights on”),
this pointer [0x10 ($v0) ] is not initialized. Therefore, null
pointer deference will be triggered in function strncpy ().

2) Belkin WeMo Switch: This is another interesting case
that we apply IOTFUZZER to a Smart Wi-Fi Switch: the Belkin
Wemo Switch. Users can conveniently configure the switch
within local network or over the Internet. To test the switch,
we pair and configure the switch with its IoT app. Then we
follow the same procedures to run IOTFUZZER. It outputs a
crash with the following fuzzing message:

<?xml version="1.0" encoding="utf-8"?>
<s:Envelope xmlns:s="http://schemas.xmlsoap.
org/soap/envelope/" s:encodingStyle="http
://schemas.xmlsoap.org/soap/encoding/">
<s:Body>
<u:SetSmartDevInfo xmlns:u="urn:Belkin:
service:basicevent:1">
</u:SetSmartDevInfo>
</s:Body>
</s:Envelope>

For the above test case, if no content is provided for
the command message "SetSmartDevInfo", the message
would cause the switch to crash and automatically reboot.
We first led wires from the motherboard and connected the
debugging pins to a computer with a serial to USB converter
(as shown in Figure 6). After we set this up, we resent the
fuzzing message, and it printed the following message in the
console, indicating that the message triggers an invalid read
access from 0x00000000.

19:34:50.036 stuntsx0x484f4 STUN client
transaction destroyed sending SIGSEGV to
wemoApp for invalid read access from
00000000 (epc 2b092804, ra 2ab2cf48
) Cpu O

00000000 00000001 2b0927f0 0003a7f0

$ 0

Call Trace:

Code: 00000000 2484ffff 24840001 <90820000>
1040002d 00000000 5449fffc 248
thready: Destructor freeing name "ChildFDTask

"

Aborted thready: make_tname_key key now "0O"
GetLock (1938): Initializing Robust mutex
for syslog, et al
thready:make_tname_key key now "O"
thready:Setting thread name to "main"
(tid:715849728)

We then confirmed the vulnerability in the firmware im-
age by manually searching the keyword “SetSmartDevInfo”.
It turns out that the object <SmartDevURL> should be
provided within the object SetSmartDevInfo. Without
<SmartDevURL>, a pointer in the data structure is not
initialized, and it then causes a read from 0x00000000.
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Fig. 6: The Belkin Wemo Switch. The debugging ports on the
motherboard is connected to a computer with a serial to USB
converter

V. DISCUSSION AND LIMITATIONS

Although our framework can discover memory corruptions
in IoT devices efficiently, there are still some avenues for
future improvements. In this section, we discuss the limitations
existing in the current design and explore how they could be
handled in the future.

Scope of Testing. While our IOTFUZZER achieves high specifi-
cation coverage (for protocols), the code coverage of firmware
and the coverage of attack surface are limited. The primary
focus is automatically identifying memory corruptions from the
data input channel of mobile apps. Memory corruptions could
result in program crashes or abnormal program behaviors,
which is always treated as a serious software safety threat.
Discovering other vulnerability types such as authentication
bypass [38] are remained as future work. For detecting (ex-
ploiting) such a memory vulnerability, IOTFUZZER (attackers)
must input actual data with debugging (malicious) intent.
For modern IoT devices, mobile apps provide the main data
input channels for convenient device management. Though
other data channels, like sensors or debug ports, may be
exploited by attackers, the bar of exploiting is quite high
due to the requirement of physical accessing, which makes
attacks difficult to succeed in practice. Therefore, at this stage,
we focus on the data input channel of IoT apps to design
I0TFUZZER and leave other channels for future investigations.

Connection Mode. In the current implementation of I10T-
FUZZER, we only focus on the devices with Wi-Fi connection
to the mobile app. However, there is no special technical
obstacle for us to extend IOTFUZZER to other communication
modes, like Bluetooth, Zigbee.

Cloud Relay. We do not consider the IoT devices which employ
the cloud as a message relay/delegate. In such communication
architecture, the request messages will be sent to the cloud set
up by the vendor, then the cloud server relays the messages to
the device, and vice versa (for response messages). Under such
a scenario, the requests may be filtered by the cloud and trigger
firewall alarms, thus breaking the work of IOTFUZZER. It is
our next step to extending our techniques to include a cloud
component.



Result Judgments. IOTFUZZER cannot generate memory cor-
ruption types and root causes directly. Similar to other fuzzers
such as PEACH [4] and Sulley [27], the design target of
IOTFUZZER is to automatically produce vulnerability alerts
(i.e., crash message) to assist security analysts locating and
confirming the root causes in firmware easily. For example,
analysts could search the keywords mentioned in crash mes-
sages as the clue to locate the vulnerable binary code block,
or utilizing existing emulation tools such as Firmadyne [13]
and Avatar [47]. In fact, in general black-box testing, the
final vulnerability confirmation always requires some kinds of
manual efforts.

Result Accuracy. 1I0TFUZZER might present false positive
and false negatives. For false positives, some crash messages
reported by IOTFUZZER are derived from the inevitable and
unpredictable network errors (see Section IV-D), especially for
TCP-based connections. For false negatives, IOTFUZZER may
miss some crashes if they occur in child processes and are
handled by the corresponding parent processes properly. Note
that, the thread crash will always affect the whole process and
lead to process crash because a thread does not have its own
address space. Also, memory corruptions will not result in
crashes in some cases. For example, a buffer overflow leads
to a corrupted local variable, and it does not corrupt the stack
frame or the return address. Detection of such corruptions still
remains an open problem for black-box fuzzing.

VI. RELATED WORK

With the increasing prevalence of IoT devices, there are
already efforts of detecting security vulnerabilities in those
devices. In this section, we review these works from two
categories: fuzz testing and IoT device security.

A. Fuzz Testing

Fuzz testing is a widely studied topic. Since IOTFUZZER
belongs to the taint-based fuzzing techniques on Android
apps, we categorize the literature into taint-based fuzzing and
fuzzing on Android.

Taint-based Fuzzing. At a high level, IOTFUZZER adopts
a taint-based fuzzing approach. Though taint-based fuzzing
is not a new technique, how to apply it to different prob-
lem settings still tackles unique challenges. For instance,
TaintScope [40] leverages taint propagation information to
bypass checksum checks via control flow alteration and thus
improves fuzzing coverage. Both Bekrar et al. [7] and Ganesh
et al. [28] identify the untrusted input that leads to critical se-
curity functions using taint analysis and then fuzz the identified
untrusted input. These works target at detecting the vulnera-
bilities of programs on the same platform and improve the
efficiency through fuzzing only a subset of inputs. In contrast,
our approach utilizes the data-flow analysis to determine how
to command the IoT app to generate meaningful test outputs
for fuzzing its remote target.

Fuzzing on Android. There exist some approaches utilizing
Android apps for remote server vulnerability fuzzing. For
instance, AutoForge [50] tries to generate cryptographically
consistent messages to identify password brute-forcing in mo-
bile services, by differing inputs to identify message fields in
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mobile applications. AuthScope [51] identifies the vulnerable
authorizations by mutating the reverse engineered security
tokens and resource IDs. Both AutoForge and AuthScope as-
sume standard protocols such as HTTP and HTTPS. Compared
with them, IOTFUZZER achieves protocol-guided fuzzing for
unknown protocols by replaying cryptographic functions in
context at runtime. Another similar work is SmartGen [49]
which performs symbolic execution on mobile apps to expose
harmful server URLs. However, IOTFUZZER targets at mem-
ory corruptions in IoT devices by triggering the network events
and mutating the seed messages in IoT apps.

On the other hand, fuzzing has been widely used to test
Android OS and apps. For example, AppsPlayground [36] is
a framework that consists of intelligent GUI exploration and
fuzz testing for vulnerability detection and malware analysis
for Android apps. IntentFuzzer [45] could detect the violation
of permission model by sending mutated Intents to various
interfaces. Buzzer [11] fuzzes the Android system services by
sending requests with malformed arguments to them. Droid-
Fuzzer [46] targets at activities that process MIME data passed
via a URI, and the activities are picked out by analyzing
the Intent-filter tag in the AndroidManifest.xml file.
However, the design goal (security analysis of IoT devices)
of IoOTFuUZzzER differ from those works significantly, which
also bring several technical distinctions.

B. Embedded / IoT Device Security

Previous research on vulnerability detection for embedded
devices focuses on certain attack surfaces in firmware images.
The most related work to ours is RPFuzzer [42], a fuzzing
framework for vulnerability detection in routers. RPFuzzer
monitors routers by sending normal packets, keeping watch
on CPU utilization and checking system logs. However, it
requires monitoring the running process. In contrast, [oTFuzzer
can perform testing without process monitoring but instead
with networking connection monitoring. On the other hand,
DrE [35] is a symbolic execution framework targeting at sensor
input channel of an embedded system. It generates traces of
sensor readings that will drive an MSP430-based embedded
system to a chosen point in its code. In contrast, [OTFUZZER
focuses on mobile apps because it is the major data input chan-
nel. Heninger et al. [30] studied the weak keys in embedded
network devices through scanning the entire address space for
listening hosts and retrieving keys from the programs. Costin
et al. [17] studied the management web interface in embedded
devices at a large scale. Also, some works proposed to apply
program analysis techniques to the firmware to discover certain
vulnerabilities. For example, FIE [21] improved symbolic
execution techniques to suit for firmware-specific features. The
result showed their tool could discover many memory bugs.
Shoshitaishvili et al. [38] proposed a general model to describe
backdoors in binary firmware and combined dynamic symbolic
execution to identify them.

For the work of case studies which identify vulnerabilities
in embedded systems, the authors usually had interesting
discoveries, but their approaches are generally not general. For
instance, Chen et al. [14] reverse engineered and exploited an
Apple firmware update. They found that with custom keyboard
firmware images, it was possible to persist a rootkit. Cui et
al. [19] also found HP LaserJet printer was vulnerable to



firmware modification attacks. They did a deep case study
on HP LaserJet printer’s update mechanism and proposed
several methods to detect and defend against attacks that were
targeting at firmware update. However, these vulnerabilities are
specific to certain models or products.

Meanwhile, there are also efforts concentrating on the
scalable security analysis of embedded devices or developing
the frameworks supporting multiple types of devices. Com-
pared with those works, IOTFUZZER focuses on automatically
identifying memory corruptions. For example, Costin et al. [17]
manually discovered many vulnerabilities by application level
emulation and static analysis. Chen et al. [13] extended
this work by emulating the whole file systems of Linux-
based firmware images with Qemu. Under their setup, the
NVRAM emulation implementation did not work for all the
firmware images because they could not emulate NVRAM-
related functions. In addition, Avatar [47] is a framework that
enables complex dynamic analysis of embedded devices by
orchestrating the execution of an emulator together with the
real hardware.

VIIL

We have presented the first IoT fuzzing framework 10T-
FuzzER, utilizing the official mobile app to detect memory
corruptions of the corresponding IoT device. To enable ef-
ficient security testing, we have developed a set of novel
techniques including in-context cryptographic and network
function replay for message generation and delivery, runtime
mutation of protocol fields without protocol specifications, as
well as a lightweight monitoring mechanism to detect system
crashes. By conducting experiments in real environment, we
successfully identified 15 memory safety vulnerabilities among
17 10T devices with IOTFUZZER.

CONCLUSION
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