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Abstract 

Support vector machine is an effective pattern classification method. Its time complexity 

and space complexity is 3
( )n  and 2

( )n  respectively for training samples with scale of n . 

Meanwhile, for core vector machine, the relation between time complexity and the scale of 

training samples is linear and space complexity is independent with the scale of training 

samples. In this paper, for the problem of big data classification, the concept and principle of 

support vector machine are described and support vector machine is converted into the form 

of minimum enclosing ball, consequently core vector machine is used to efficiently obtain the 

approximate optimal solution. Experiments confirm that core vector machine algorithm can 

classify the big data quickly and efficiently. 

Keywords: Support Vector Machine (SVM); Minimum Enclosing Ball (MEB); Core Vector 

Machine (CVM); Big Data (BD) 

1. Introduction 

Inducing the motion laws of the system from observed data and then using these motion 

laws to predict future data or not observed data have always been a focus in the field of 

artificial intelligence. Traditional learning method using empirical risk minimization rule can 

minimize the train error, but cannot guarantee to maximize the generalization ability of the 

system.  Therefore, Vapnik [1, 2] proposed the rule of structural risk minimization which can 

maximize generalization ability by minimizing the upper bound of errors. Support Vector 

Machine (SVM) proposed by Vapnik is the implementation of structure risk minimization. 

The basic idea of SVM [3, 4] is to construct the optimal hyperplane in the feature space of 

samples, and then maximize the distance between hyperplane and different sample sets, 

therefore can achieve maximum generalization ability. SVM manifests many advantages in 

solving small sample、 nonlinear and high dimensional pattern recognition problems and 

overcomes the "curse of dimensionality" and "over learning" problems to a great extent. SVM 

with the global optimality and good generalization ability has solid theoretical foundations 

and simple mathematical model. so in areas such as pattern recognition, regression analysis, 

function estimation, time series prediction SVM has got considerable development. 

The standard support vector machine learning algorithm can be reduced to solving a 

constrained quadratic programming problem.  For small-scale quadratic optimization problem, 

mature classical optimization algorithm such as Newton's method and interior point method 

can be used to solve it. However, the essence of training process of SVM is to solve a 

quadratic programming problem, so the time complexity is 3
( )n  and space complexity 

is 2
( )n when handling problems with scale of .If the training set size is very large, the 

training time of SVM will be too long, at the same time, the size of the kernel matrix will be 

too big and lead to insufficient memory. Consequently the research of using SVM to handle 
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large scale problems is imperative. In this paper, the essence of SVM is used to transform the 

kernel method into geometric problems. Based on approximation of SVM’s solving process, I. 

W. Tsing [5] proposed to transform the kernel method into problem of minimum enclosing 

ball (MEB) and put forward the core vector machine (CVM) algorithm. The equivalence 

between SVM and MEB is proved, accordingly the fast algorithm CVM is used to solve the 

large scale problem. Firstly, CVM selects a sample as the core vector using some heuristic 

rules, meanwhile calculates the radius and center of the initial MEB; Secondly, CVM finds 

the sample farthest away from the center of MEB and includes the sample into core vector 

sets; Thirdly, CVM calculates the radius and center of the new MEB. The above process is 

repeated until no samples can be included, a MEB of the whole training set is obtained. 

Finally, based on the equivalence between SVM and MEB, the optimal classification 

hyperplane is obtained. Because of time complexity of solving MEB is linear with the scale of 

training sample and space complexity is independent of the scale of training sample, the time 

complexity of CVM is linear with the scale of training sample and the space complexity is 

independent of the scale of training samples. Simulated results show that, CVM has the same 

generalization ability as standard SVM, but a shorter solving time, furthermore is effective for 

big data. 

The remainder of this paper is organized as follows. Section 2 discusses systematically 

principle and algorithm of SVM. Section 3 studies the thought and theory of MEB. Section 4 

reports that two class SVM and one class SVM can be transformed into MEB problem, then 

can be implemented using CVM algorithm. The experimental results and analysis are given in 

section 5. Conclusions are given in the final section. 

 

2. Principle of SVM 

SVM is proposed with the optimal classification separate plane from the linear 

perspective. The mechanism of SVM is to seek an optimal classification hyperplane 

satisfying requirements. In theory, SVM can achieve the optimal classification for 

linear data. Considering the 2-dimensionality two class linear separate condition shown 

as Figure 1, solid and hollow points represent two kinds of training samples, H is 

straight line separating two classes with no errors, H1 and H2 are straight lines 

respectively by points of two classes nearest and parallel to H, the distance between H1 

and H2 is called classification margin of two class. The optimal classification line not 

only can classify two classes correctly but also maximize the margin between two 

classes. The former is the guarantee of empirical risk minimization; the latter is to 

minimize the confidence limits of generalization bounds, so that the real risk is 

minimized. Generalized to high dimension space, the optimal classification line is 

called the optimal hyperplane. In this paper, linear and nonlinear conditions for two 

class are discussed. For training samples { ( , ) , , { 1, 1} , 1, 2 , ..., }
d

i i i i
T x y x y i n       , the 

general form of the classification hyper plane is ( )
T

g b x w x . Relevant document 

confirms that classification hyperplane with form of ( )
T

g x w x  has better performance, 

so the form is used in this paper. 
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H2

H

H1

Margin=
2/||w||

 

Figure 1. The Optimal Classification Hyperplane of SVM 

2.1. The Linear Case 

For training samples {( , ) , , , = 1 , 2 , ..., }
i i i i

T i n  x yx y x y , , { 1, 1}
d

   x y , if there 

exits classification hyper plane and  d
w  

0
T

w x =                                              (1) 

subject to 

1, 1,

1, 1, 1, 2 , ...,

T

i i

T

i i

y

y i n

 

    

w x

w x

                           (2) 

Then T is linearly separable. Equation (2) is rewrite as equation (3): 

1, 1, 2 , ...,
T

i i
y i n w x                                    (3) 

Accordingly the discriminant function ( ) ( )
T

y s ig nx w x  is obtained. To obtain the optimal 

hyperplane needs to maximize
2

2

w

, that is to minimize
21

2
w  , so the object function is as 

follow: 

2

1

1
a rg m in a rg m in

2

. . 1 1, 2 , ... ,
T

i i

J

s t y i n



 

w w

w

w x

                            (4) 

Equation (4) is a quadratic programming problem. If T is not linearly separable, non-

negative slack variables , 1, 2 , ...,
i

i n   are introduced and the optimization problem to obtain 

classification hyperplane is as follow: 
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2

2
, ,

1

1
a rg m in a rg m in

2

. . 1

0 , 1, 2 , ... ,

i

n

i

i
T

i i i

i

J C

s t y

i n











 

 

 


w w ξ

w

w x                          (5) 

C  is penalty parameter, the bigger C value is , the greater the misclassification punishment 

is. Lagrange multiplier method is used to solve the quadratic programming problem with 

linear constraints and the dual optimization problem is as follow: 

3

1 1 1

1
a rg m in a rg m in

2

. . 0 , 1, 2 , .. . ,

i i

n n n

T

i j i j i j i

i j i

i

J y y

s t C i n

 

  



  

 

  

  x x
               (6) 

The optimal solution * * *

1
( , ..., )

T

n
    is achieved from object function (6), consequently 

classification hyperplane parameter is achieved
1

n

i i i

i

y



w = x . 

 

2.2. The Nonlinear Case 

When T is not linearly separable, transformation from input space d to Hilbert space H: 

:

( )

d
X H

x X x

  

  
, accordingly, { ( ( ) , ) , ( ) , { 1, 1} , 1, 2 , ..., }

i i i i
T x y x H y i n         and 

classification hyperplane is as follow: 

( ) 0
T
w x =                                           (7) 

The discriminant function is ( ) ( ( ) )
T

y s ig n x w x . Object function to solve optimal 

classification hyperplane is as follow: 

2

4
, ,

1

1
a rg m in a rg m in

2

. . ( ) 1

0 , 1, 2 , ... ,

i

n

i

i
T

i i i

i

J C

s t y

i n











 

  

 


w w ξ

w

w x                                (8) 

Correspondingly, the dual optimization problem is as follow: 

5

1 1 1

1
a rg m in a rg m in ( , )

2

. . 0 , 1, 2 , .. . ,

i i

n n n

i j i j i j i

i j i

i

J y y K x x

s t C i n

 

  



  

 

  

                     (9) 

( , ) [ ( )] ( )
T

i j i j
K x x x x  is kernel function. * * *

1
( , ..., )

T

n
   is obtained from object function 

(9) and 
1

( )

n

i i i

i

y 



w = x  is obtained, consequently discriminate function is 

1

( ) sg n ( ( , ) )

n

i i i

i

f x y K



  x x . 
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T  is projected into high dimensionality or infinite feature space through nonlinear 

transformation 
:

( )

d
X H

x X x





 

 
and optimal classification hyperplane is constructed in the 

feature space, but in the process of solving optimization problem and calculating discriminant 

function, nonlinear function ( )x need not to explicitly compute and only need to compute 

the kernel function, accordingly, the curse of dimensionality in feature space is avoided. The 

choice of kernel function must satisfy the Mercer condition. The commonly used Kernel 

function are linear function ( , )
T

i i
k x x x x , polynomial function ( , ) (

T

i i
k x x x x +

p
1) , Gauss 

kernel function
2 2

( , ) e x p ( /
i i

k   x x x x , and so on. 

 

3. Principle of MEB 
 

3.1. MEB in Computational Geometric 

Considering sample sets
1 2

{ , , ..., }
n

T x x x , MEB in computational geometric is minimal 

ball including all samples in T . Approximate MEB based on core set is discussed in the 

following. ( , )B c R denotes a ball with center c and radius R . Given 0  , if 
( )M E B T

R r  and 

( , (1 ) )T B c R   then ( , (1 ) )B c R  is a (1 ) -approximation of  MEB ( )T ,shown as Fig.2. 

The inner circle is the MEB of the set of squares and its (1+e) expansion (the outer circle) 

covers all the points. The set of squares is thus a core set. In many shape fitting problems, it is 

found that solving the problem on a subset, called the core set, Q  of points from T can often 

give an accurate and efficient approximation. More formally, if ( , ) ( )B c R M E B Q  and 

( , (1 ) )T B c R  , then Q is core set of T with Q T . 

 

R

R

 

Figure 2. The Demonstration of MEB in Computational Geometric 

In order to obtain the core set, Badoiu and Clarkson in 2002 proposed a simple 

iterative algorithm [6] to calculate an (1+)-approximation of MEB. The specific steps 

are as follows: At the tth iteration, the current estimate ( , )
t t

B c r  is expanded 
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incrementally by including the furthest point outside the (1+)-ball ( , (1 ) )
t t

B c r . This is 

repeated until all the points in T  are covered by ( , (1 ) )
t t

B c r . Despite its simplicity, the 

number of iterations, and the size of the final core set, depends  only on   but not on 

dimensionality d or the size of T n . The independence of d  is important on applying 

this algorithm to kernel methods as the kernel-induced feature space can be infinite-

dimensional. As for the remarkable independence on n , it allows both the time and 

space complexities of algorithm to grow slowly. 

 

3.2. The Theory and Kernel Method of MEB  

The primal object function of MEB is as follow: 

2

5
, ,

2 2

a rg m in a rg m in

. . ( ) 1, .. . ,

c R c R

J R

s t c R i m



  
i

x
                            

(10) 

  is feature mapping corresponding to kernel k , ( , )B c R  is MEB in kernelized feature 

space. The corresponding dual problem is quadratic programming problem as follow: 

    

6
a rg m a x a rg m a x ( )

. . 1 1,

T T

T

J d ia g K K

s t

 

 

 

α α α

α α 0                         (11) 

 1
, . . . ,

T

m
 α = is Lagrange multiplier vector, ( , ) ( ) ( )

T

m m
K k  


   

   i j i j
x x x x is the 

corresponding kernel matrix. Given k  satisfying  

( , )k x x                                                                    
(12) 

is constant. Equation (11) can be rewrite as: 

   
7

a rg m a x a rg m a x

. . 1 1,

T

T

J K

s t

 

 

 

α α

α α 0

                               (13) 

The primitive variable of MEB can be obtained by solving the optimal value of equation 

(13): 

   
1

( ) , ' ( ) '

n

i i

i

c R d ia g K K    



   x                    (14) 

Thus, MEB can be transformed into quadratic programming problem in kernelized feature 

space. Theory of MEB points out, quadratic programming problem being form of equation 

(13) with kernel functions satisfying equation (12) can be regarded as MEB, which can use 

approximate MEB algorithm to solve quadratic programming problem, so time complexity 

and space complexity solving quadratic programming problem can be decreased. 

 

3.3. The Relationship between SVM and MEB 

In literature [7], Tsang reveals that quadratic programming problem satisfying certain 

conditions is equivalent to MEB problem and can be solved by the iterative algorithm which 
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is proposed by Badoiu in 2002 for solving big data problems and calculates approximate 

MEB problem. 

In nonlinear SVM, the classification intervals is set from 1 to a soft interval and the 

objective function becomes slightly as follow: 

 

2 2

8
, ,

1

1
a rg m in a rg m in

2

. . ( )

i

n

i

i
T

i i i

J v C

s t y



 

 


  

  


w w ξ

w

w x

                (15) 

Its dual function is: 

      
9

1 1

1

a rg m a x a rg m a x ( ( , ) )
2

. . , 0 , 1, 2 , . . . ,

i i

n n

ij

i j i j i j i j

i j

n

i i

i

J y y K x x y y
c

s t v i n

 


 

 

 



   

  

 



          (16) 

In Eq.(16), 
1

0
ij

i j

i j


 

 


, Letting i

i

v


 and Eq.(16) becomes 

1 0

1 1

1

a rg m a x a rg m a x ( ( , ) )
2

. . 1, 0 , 1, 2 , . . . ,

i i

n n

ij

i j i j i j i j

i j

n

i i

i

J y y K x x y y
c

s t i n

 


 

 

 



   

  

 



              (17) 

Letting ( , ) ( , )
2

ij

i j i j i j i j
K y y K y y

c


  x x x x  then 

1
( , ) ( , ) 1

2
K K

c
  x x x x .If kernel 

function ( , )K x x ,then 
1

( , ) 1
2

K
c

  x x  is a constant, thus the dual problem of 

nonlinear SVM satisfies Eq.(12) (13) and a conclusion that classification problem in one 

feature space becomes MEB problem in another space is got. 

 

4. CVM Algorithm 
 

4.1. The Step of CVM Algorithm 

Classification problem in one feature space becomes MEB problem in another space and 

can be solved quickly and approximately by CVM algorithm. For training set 

{ ( , ) , , ( 1, 1) , 1, 2 , ..., }
d

i i i i i
T z x y x R y i n       , mapping kernel function   is adopted 

corresponding to transformed kernel K .The CVM algorithm is as follow: 

(a) Initialize 
0 0 0
, ,S c R   

(b)Terminate if there is no training point z such that ( ) z  falls outside the (1+  )-

ball ( , (1 ) )
t t

B c R . 

(c)Find z  such that ( ) z  is furthest away from
t

c . Set
1

{ }
t t

 S S z . 

Onli
ne

 V
ers

ion
 O

nly
. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 9, No. 10 (2014) 

 

 

86   Copyright ⓒ 2014 SERSC 

(d)Find the new MEB
1

( )
t 

S .Set 
1 1

1 M E B ( ) 1 M E B ( )
,

t t
t S t S

 
 

 c c R R . 

(e) 1t t   and return to step(b) 

 

4.2. The Detailed Process of CVM Algorithm 

 

4.2.1. Initialization: We start with an arbitrary point z S and find 
a
z S that is furthest 

away from z .  Then, we find another point 
b
z S that is furthest away from

a
z . Obviously, 

the initial core set is
0

{ , } ,
a b

S z z
0

1
( ( ) ( ) ) ,

2
a b

c z z  
1

,
2

a b
  

0

1
( ) ( )

2
a b

R z z   .  

 

4.2.2. Distance Computations: Step (b) and (c) involving computing 
2

( )
t l

c z for
l
z S . 

On using ( )
i t

i iz S
c z 


  , we have 

2

,

( ) ( , ) 2 ( , ) ( , )

i j t i t

t l i j i j i i l l l

z z S z S

c z k z z k z z k z z   

 

     . Hence, computations are based on 

kernel evaluations instead of the explicit ( )
l

 z , which may be infinite-dimensional. However, 

calculating point farthest away from the center point requires calculating the distance between 

all the other points and the center point. When the number of samples is very large, the time 

cost is very huge. In this paper, CVM uses an accelerated method
[8]

 proposed by Smola and 

Scholkopf in 2000. The idea is to randomly sample a sufficiently large subset 
0

S from S , 

and then take the point in 
0

S that is furthest away from 
t

c  as the approximate furthest point 

over S . As shown in (Smola and Sch ölkopf, 2000), by using a small random sample of, say, 

size 59, the furthest point obtained from 
0

S  is with probability 0.95 among the furthest 5% of 

points from the whole S .This method can greatly reduce the time complexity and can also be 

used for the initialization step. 

 

5. Experiments and Analysis 
 

5.1. Experiment Settings 

The experiment result is reported from two aspects: firstly, the performance of CVM 

and SVM is compared on accuracy and solving time; secondly, the sensitivity of 

parameter  on performance of CVM is analyzed. The banana datasets with different 

scales are adopted in experiment. 
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Figure 3. Artificial Banana Dataset 

C parameter and kernel parameter  are needed in SVM; approximation parameter  , C  

parameter and kernel parameter  are needed in CVM. Followed as experience, the domain of 

C parameter is {0 .1, 0 .2 , 0 .5,1, 2 , 5,1 0, 2 0, 5 0,1 0 0} ; Gaussian kernel function, i.e., 
2

( , ) ex p ( )K



 

x y
x y , is adopted by CVM and SVM, and the kernel width    is 

determined from 
2 2 2 2 2

2 2 2 2 2
, , , , , , 2 , 4 , 8 ,1 6

3 2 1 6 8 4 2

    
    

 

 

 

, where   is the standard 

deviation of the corresponding dataset; the domain of  approximation parameter   is 

{1 1,1 2 ,1 3,1 4 ,1 5,1 6,1 7 ,1 8,1 9 ,1 1 0}e e e e e e e e e e          . 

 

5.2. Experiment and Result Analysis 

Table 1 records training time, test time and classification accuracy of SVM and CVM with 

different training set size. The size of core set of CVM algorithm is also recorded. For all the 

algorithms, the related parameters are determined by the grid-search strategy. When these 

parameters are fixed, each algorithm is carried out ten times and the corresponding average 

classification performance is recorded. 

Table 1. Performance Comparison of CVM and SVM 

 size of sample 
size of 

core set 

solving time(unit:sec) classification accuracy 

training 

set 

testing 

set 

SVM CVM SVM CVM 

100 1000 62.5±4.3 16.6292±0.0023 22.3848±0.0023 0.8558±0.0226 0.8421±0.0012 

500 1000 189±13.7 21.9042±0.0047 22.8808±0.0047 0.8921±0.0009 0.9013±0.0200 

1000 1000 253.7±8.9 31.1062±0.0102 23.5883±0.0209 0.9120±0.0032 0.9238±0.0201 

2000 1000 432.2±18.1 41.0539±0.0034 23.5507±0.0109 0.9239±0.0012 0.9169±0.0089 

3000 1000 498.2±30.1 72.2946±0.0056 24.0588±0.0067 0.9421±0.0035 0.9478±0.0019 

4000 1000 623.6±6.9 166.8772±0.0019 26.3078±0.0900 0.9419±0.0123 0.9398±0.0104 

5000 1000 671.4±3.8 - 26.3657±0.0701 - 0.9538±0.0203 

7500 1000 948±23.1 - 28.7238±0.0602 - 0.9609±0.0078 

10000 1000 1547±19.8 - 83.0154±0.0023 - 0.9529±0.0830 

12500 1000 2269±12.3  161.5609±0.0067  0.9610±0.0023 

15000 1000 2269±14.6 - 238.4546±0.0028 - 0.9489±0.0109 

Note: "-" represents out of memory in matlab when SVM runs. 
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CVM is run using banana set with scale of 10000, Table 2 shows the influence of 

approximation parameter with different values. 

Table 2. The Influence of Approximation Parameter   with Different Values on 

CVM (
2

1 0 ,

2

C


  ) 

  classification accuracy size of core set solving time(unit:sec) 

1e-1 0.8997 130 0.8976 

1e-2 0.9087 352 58.7865 

1e-3 0.9100 649 295.3524 

1e-4 0.9178 1025 1534.6548 

1e-5 0.9230 1345 1647.3965 

1e-6 0.9500 1520 1749.3621 

1e-7 0.9526 1548 1802.1400 

1e-8 0.9538 1987 2350.8649 

1e-9 0.9620 3978 10367.4789 

1e-10 0.9620 5134 29569.3420 

 

From Table 1, the following observations can be made: for small datasets, the 

classification accuracy of CVM is almost the same as that of SVM and the solving time of 

SVM is less than that of CVM; for big datasets, the solving time of CVM is much less than 

that of SVM and the classification accuracy of CVM is almost the same as that of SVM. 

Using the core set instead of all the samples, the storage space is reduced on a large scale. So 

the CVM algorithm can solve problem of big data. 

As can be seen from Table 2, the smaller approximation parameter  is, the smaller 

classification error is and the longer the solving time is.  In this experiment, the parameter 

 with 1 7e  can get the best coordination between classification accuracy and training time. 

 

6. Conclusion 

Pattern classification is an important research branch in the field of pattern recognition and 

SVM method is an effective method to solve the problem of pattern classification, but in 

background of big data , due to the constraints of time and space complexity , SVM cannot 

solve pattern classification problems efficiently; CVM is a new pattern classification method, 

it transforms kernel method into an equivalent MEB problem and is combined with 

computational geometry, thus CVM solves the problem of time and space requiring in 

processing big data. Experiments show that compared with SVM, CVM can not only ensure 

the classification accuracy but also economize running time and storage space. 
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