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Abstract 

A new strategy on reactive power optimization for power grid with wind farm 

integration is proposed. The mathematical model is built by using the optimal scenario 

analysis method and the modified particle swarm optimization algorithm (MPSO). The 

method about how to obtain the optimal scenarios is discussed. The optimal scenarios 

position for wind power is deduced based on the Wasserstein distance metric, and the 

occurrence probability is also studied simultaneously. In order to avoid falling 

into local optimum, the self-adapting mutagenic factor and mutation probability are 

designed in MPSO. Simulation examples show the effectiveness of MPSO. The mutagenic 

factor takes effect when the objective function value tends to be constant. Power loss and 

voltage stability margin are considered in the objective function. In initial phase of 

MPSO, the general particle swarm optimization algorithm (PSO) is processed, and this 

can guarantee the rapid convergence for the optimization procedure. After some 

iterations, the mutagenic factor begins to have an impact to ensure the global optimum 

can be obtained. The IEEE 69-bus distribution system is used to the experiment. In the 

experiment, the optimal scenarios position and scenario occurrence probability are 

worked out. Test results show that the new strategy is effective. 

 

Keywords: Reactive power optimization, Wind power, Optimal scenario, Particle 

swarm Optimization 

 

1. Introduction 

Affected by the tight energy supply, the utilization of wind resources is being received 

attention across the globe. But the wind is a sort of random and intermittent energy [1], 

and when wind farm is injected into the distribution network, the load flow distribution of 

network is affected. The node voltage and the network loss are changed. This brings new 

problems in optimization of reactive power, and the existing optimization methods need 

to be modified. 

In recent years, many scholars study the reactive power optimization in power system 

with wind power generators. In [2], Monte-Carlo simulation is used to process the 

reactive power optimization, but it cannot make response quickly and cannot change with 

power network’s situation. In [3], the model and algorithm are put forward for the 

reactive power optimization of power grid embedded with multiple wind farms. The 

scenario analysis method is applied to describe the random outputs of wind power, and a 

scenario model is built for reactive power optimization. But, how to obtain the optimal 

scenarios position is not considered, and the method’s effect is not good. In [4], a reactive 

power optimization algorithm is studied. The scenario analysis method and the quantum 

particle swarm optimization (QPSO) are proposed for reactive power optimization. The 

modified IEEE 33-bus system is used to demonstrate the effectiveness. But the scenario 

analysis process is too simple, and the complicated situations of wind power can not be 

fully considered. 

mailto:%7D@fcu.edu.tw
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Of varied methods, the scenario analysis is an effective method to overcome the 

randomness of wind power, and it is often used to build the mathematical model of 

reactive power optimization.  From the present study, we find that the scenarios are 

usually divided by experience in the scenario analysis method, and the study on how to 

obtain the optimal scenarios is seldom discussed. On the other hand, the optimization 

algorithm is very important in the reactive power optimization, and the particle swarm 

optimization (PSO) is often used to the optimization process. But PSO is easy to fall into 

local optimum, and the algorithm should be improved. 

This paper puts forward a new algorithm for optimal reactive power. The algorithm is 

based on the optimal scenario analysis and the modified particle swarm optimization 

algorithm (MPSO). The formulas on how to get the optimal scenarios and the occurrence 

probability are deduced. In the MPOS, the self-adapting mutagenic factor and the 

mutation probability are designed and used, and the algorithm can avoid falling into the 

local optimum effectively. 

 

2. The Optimal Scenarios Division  

Scenario analysis technique is a method that handles the random and intermittence 

problem. It changes the uncertain factors to some certain scenarios in order to deal with 

the difficulty of processing. By scenario analysis, several certain scenarios can be 

obtained by decomposing the uncertain scenario, and all the scenarios are optimized 

respectively. By overlying each optimized result, the final optimize result can be acquired. 

This section firstly discusses the method on how to get optimal scenario, and then by the 

method, the optimal scenario formula for wind power is deduced. 

 

2.1 The Method of Getting Optimal Scenario  

The optimization method based on scenario analysis is to change a set of uncertain 

random variables to some certain scenarios.  The uncertain random variables are 

expressed by a group of discrete probability expressions. The expression is（Sn, P
~

n）, 

n=1,2,…,N.  Sn is the nth scenario. The P
~

n is the probability of scenario occurrence. The n 

is the number of scenarios. In the process of acquiring the optimal scenario, the n must be 

determined at first, and then Sn and P
~

n can be obtained when the optimization condition is 

met [5]. 

In this paper, the Wasserstein distance metric is used as the optimization 

condition. The Sn value and P
~

n value are evaluated on the condition when the 

Wasserstein distance is minimum. The Wasserstein distance is given below: 
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Here dw(P, P
~

) is the Wasserstein distance;  P(∙) and P
~

(∙) are respectively the 

continuous and the discrete probability distribution function. The S1, S2,… SN  are the 

scenarios for P(x). 

The optimal scenario can be acquired by the next two steps: first, the optimal 

scenario position Sn must be determined, and then P
~

n can be obtained by the 

condition that Wasserstein distance is minimum. Based on the [5], the optimal 

scenario position Sn (n=1,2, …, N) for the probability density function f(x) can be 

evaluated by the next formula: 
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The probability of scenario occurrence P
~

n can be obtained by next formulas: 
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Here  10 , Nss . 

Above formulas discuss the general method to get optimal scenario for a 

continuous discrete probability distribution function. To wind power, the optimal 

scenario can be deduced based on above formulas, and the concrete procession is 

illustrated as below. 

 

2.2 The Optimal Scenario for Wind Power 

The wind speed is related to the wind turbine generator’s output power. The 

relationship between wind speed and output power is shown in Figure 1 [6].  
 

 

Figure 1. Power Output Curve of Wind Turbine 

The cut-in wind speed is vi , and the rated wind speed is vn ; vo represents the cut-out 

wind speed. The rated output of wind turbine is ω n [7, 8] . 

When the wind power ω ∈(0, ω n), the probability density function for wind power 

can be given: 
ktk

ni ektcvVvff  1
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(4) 

Where t=(t+h/ω n); (vi/c)= c2ω + c1; c1=vi/c; c2=(vi/c)(h/ω n). The c is the scale 

parameter, c>0; k represents the shape parameter, k>0. 

Above formula is substituted into the right of formula (2), and the next formula is 

obtained: 
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Let a=（k+1）/(2k), x=t
k
/2, the next formula is obtained: 
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The c3=2
a
(kc2)

-1/2
. The incomplete gamma function is dxex

a
xa




0

1(a)a)(x, , the next 

formula is obtained: 
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In the same way, the left of formula (2) can be shown: 

a)],(c-a),c(c(a)[)( 1n213
0

 scdf
ns

  
(8) 

So, formula (2) can be expressed: 
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Through above analysis, we can see that the optimal scenario position Sn can be 

evaluated by formula (9), and the scenario occurrence probability P
~

n can be 

evaluated by formula (3). 

By Figure 1, we can obtain three kinds of scenarios. The first is the scenario of rated 

output (vn<v<vo), the second is the scenario of owe rated output (vi<v<vn), and the third is 

the scenario of zero output (v<vi or v>vo). Ulteriorly, the scenario of owe rated output is 

divided into four scenarios in this paper, and each optimal scenario position (Sn) can be 

determined by formula (9); the scenario occurrence probability ( P
~

n ) can be calculated by 

formula (3). 
 

3. The Modified Particle Swarm Optimization Algorithm (MPSO) 
 

3.1. The Introduce of MPSO 

The particle swarm optimization algorithm (PSO) has been widely used [9][10]. 

Supposing the number of the particle population is u, and u is the set of k-dimensional 

vectors. The ith vector is xi= (xi1, xi2, … , xik). The optimal solution of each particle is 

pbesti=(pi1,pi2, … ,pk); the optimal solution for particle population is pgbest=( pgbest1, pgbest2, 

…, pgbestk); the speed of ith particle is vi=( vi1, vi2,…, vik). The speed and the position for 

each particle are updated by the following formula: 
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Formula (10) is the update of speed, and formula (11) is the update of position. 

The d is the number of dimension; δ  is inertia weight; n is iterations; r1 and r2 are 

random number between 0 and 1; c1 and c2 are acceleration coefficient. In each 

iteration, v
 n

 id
 
is updated by v

 n+1
 id, and the x

n
id is updated toward x

 n+1
 id

 
at speed of v

 

n+1
 id. 

PSO algorithm has fast convergence speed, but the local optimal problem limits 

its application. Adding the mutagenic factor to the PSO can increase the 

dispensability of the particle swarm, and the premature convergence can be 

restrained. The MPSO is put forward based on PSO, and the mutagenic factor is 

designed to avoid falling into local optimum. When the convergence result tends to 

be constant, the mutagenic factor is added to formula (11), and formula (11) is 

replaced by next formulas: 
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The r(10/n)σ  is the mutagenic factor. The r is a random number between 0 and 

1; n is iterations. By formula (13), we know that σ  is the average of the x
n

id, 

d=(1,2,…, k). 

From above formulas, it can be seen that the mutagenic factor is smaller with the 

increasing of iterations. So, the effect of the mutagenic factor is that x
n

id has a 

bigger variation in the initial phase, and with the iterations increasing, the degree of 

variation is smaller. That is conducive to obtain a convergence result. 

The mutation probability Pm is designed as below:  
)/(02.01.0 max nnPm   

(14) 
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Here n is iterations, and nmax is the maximum iterations.  

From formula (14) we can see that Pm is smaller with the increased of n. When 

the n is equal to nmax, Pm reaches the minimum.  

The strategy of MPSO is that in the beginning stages of the algorithm, the process 

is carried out according to formula (10)(11) in order to obtain a fast convergence 

speed. When the result tends to be constant, the above mutagenic factor should be 

added according to formula (12), and the above Pm is also needed. By using 

mutagenic factor, diversity of particles is ensured, and premature convergence is 

overcome availably. 

Figure 2 shows the working process for MPSO. The nm is the iteration that 

mutagenic factor should be added. 

 

3.2. The Simulation Examples for MPSO 

 

Two commonly used functions, the Levy function and the Pathological function, are 

used in the simulation experiment in order to prove the validity of MPSO. 
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Formula (15) is the Levy function, and formula (16) is the Pathological function. 

The operating parameters for MPSO are: δ =0.7; c1=c2=1.5; population quantity is 

100; the dimension of each particle is 50; the total iterations are 800. For the Levy 

function, the mutagenic factor is added at 300 iteration, nm=300. For the Pathological 

function, the mutagenic factor is added at the beginning of MPSO, nm=0. To above two 

formulas, Figure 3 and Figure 4 give the contrast results of PSO and MPSO. From the 

contrast results we can see that the global convergence results are obtained by MPSO 

algorithm and the MPSO is more effective. 

 

 

Figure 2. Flow of  MPSO 
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Figure 3. Result of Levy 
Function 

 

Figure 4. Result of Pathological 
Function 

4. The Mathematical Model for Reactive Power Optimization 
 

4.1 The Objective Function 

The multi-objective optimization function is set up in this paper. Power losses (Ploss) 

and stability margin of static voltage (η) are considered. The ultimate aim is obtaining the 

minimum power losses and the stability margin. Relevant parameters are redefined base 

on the scenario occurrence probability. 
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  The n is the total number of scenarios, and P
k
loss is the power losse for the kth 

scenario; ηk is the stability margin of static voltage for the kth scenario, and pk is the 

occurrence probability of the kth scenario. By the normalization, above two 

formulas are given below: 
)/()( min1max1min11
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The next formula is used as the final objective function: 

*

2

*
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 (19) 

The t1 and t2 are weighing factors. 
 

4.2 The Constraints 

   The constraints for active power and reactive power of each node are: 
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   The Pi and Qi are the active power and reactive power of node i; Ui and Ui are the 

voltage of node i and j, and δij is the angular phase difference of node i and node j. 

Gij and Bij are the conductance and susceptance for node i and node j. 

In wind farm, the values of Pi  and Qi are respectively depend on wind speed and 

generator voltage [11]. 

The control variable constraints are given below: 

maxmin GGG QQQ   (22) 

maxmin TTT   (23) 

maxmin GGG UUU   (24) 

app:ds:transmission%20line%20losses
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maxmin iii UUU   (25) 

maxmin CCC   (26) 

The Qg is the reactive power of generator, and UG is the generator terminal 

voltage. T is the ratio of variable-voltage transformer, and C is the susceptance 

value. Ui is the node voltage. 

 

4.3 Coding Format 

The capacitor set numbers (T) and adjustable transformer tap values(C) are used to 

coded, and integer coding is adopted.   The coding format is shown as below: 

]...|...[ 2121 ji CCCTTTx   (27) 

The x is one particle. The T is the adjustable transformer tap, and C represents value 

and capacitor set number. The i and j respectively represent the total numbers of the 

adjustable transformer and the total numbers of the capacitance bank. 

 

5. Experiment and Analysis 

The IEEE 69-bus distribution system, which is shown in Figure 5, is adopted to verify 

the effectiveness of MPSO. The detailed parameters data for IEEE 69-bus are given in 

[4]. The five nodes (11, 27, 35, 47, 54 and 69) are used to cut and throw capacitor banks, 

and the capacitor bank of every capacity is 50kvar. Ten every capacitor banks compose a 

group. The size of particle swarm is 40. The maximum iteration (nmax) is 120; c1=c2=2.  

 

 

Figure 5. IEEE 69-Bus Distribution System 

 

Figure 6. Comparison of two Algorithms 

At the node of 54, a wind generator (rated voltage is 690v) is injected. The capacity of 

the wind generator rated is 600kw. The cut-in wind speed is 5m/s.  The cut-out wind 

speed is 45m/s. The rated wind speed is 15m/s.  
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When the mutagenic factor takes effect is a problem that deserves to be discussed. By 

observing Figure 3 and Figure 6 we found that there usually is the area S before the 

algorithm trapping in local optimum. If the mutagenic factor is added at the iteration in 

the area S, the local optimum result can be avoided. By studying the experimental curves, 

the area S is easily found. By the optimal curve of this paper, we find the area S is near 

the 20 iterations. So, nm=20. 

According to section 2.2, the owe rated output scenario is consisted of four scenarios.  

The four scenarios is expressed by Sn (n=2,…,5), and the occurrence probability is Pn 

(n=2,…,5).  The zero output scenario and occurrence probability are S1 and P1. The 

rated output scenario and it’s occurrence probability are S6 and P6. By the formula (9) 

and formula (3), we can obtain the results that are shown in Table 1. 

Table 1. The Scenarios and their Occurrence Probability 

 n=1 n=2 n=3 n=4 n=5 n=6 

Sn 0.0000 0.0768 0.2701 0.5000 0.8021 1.0000 

Pn 
0.1049 0.0792 0.1054 0.1601 0.1759 0.3745 

 

Figure 6 shows the comparison curves for MPSO and PSO. From curves in Figure 5 

we can see that both the two algorithms can converge rapidly in the initial phases. But, the 

PSO has trapped into local optima after 20 epochs, and the MPSO can obtain the result of 

global convergence. 

Table 2 gives the results of reactive power optimization. In optimization schemes, the 

number that is shown in the brackets is capacitor set numbers, and the number outside the 

brackets is node numbering. The final optimum result is represented by “opt”. In the final 

optimum results, the occurrence probability for each scenario is considered. 

Table 2. Optimization results 

 
Optimization  schemes 

power 

loss(kw) 

stability margin of 

static voltage 

scenario 1 11(7)  27(7) 35(2) 47(6) 54(9) 69(8) 83.52 0.01281 

scenario 2 11(8) 27(7) 35(3) 47(6) 54(8) 69(8) 96.02 0.01281 

scenario 3 11(8) 27(8) 35(4) 47(7) 54(9) 69(6) 115.01 0.01289 

scenario 4 11(9) 27(10) 35(5) 47(8) 54(10) 69(7) 124.33 0.01293 

scenario 5 11(9) 27(9) 35(4) 47(8) 54(10) 69(5) 114.99 0.01288 

scenario 6 11(10) 27(9) 35(4) 47(6) 54(9) 69(6) 107.13 0.01295 

opt 11(10) 27(9) 35(3) 47(6) 54(10) 69(6) 106.51 0.01283 

In Table 2, the stability margin of static voltage and the power loss for opt and all 

scenarios are given. As can be seen from table 2, though the results of opt are not the 

optimum value compared with the other scenarios, but comprehensive evaluation results 

of opt are optimal. 
 

6. Conclusions 

In this paper, the reactive power optimization for power network with wind farm is 

proposed. The mathematical model based on optimal scenario classification and the 

modified particle swarm optimization is presented. To solve the intermittent and 

uncontrollability that brought by wind farm injection, the method of optimal scenario 

analysis is used. The optimal scenarios position for wind power is deduced based on the 

Wasserstein distance metric, and the occurrence probability of scenario formula is given. 

The PSO is improved to avoid involving local optimum. The self-adapting mutagenic 
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factor and Pm are designed in MPSO. When the algorithm tends to local optimum, the 

mutagenic factor begins to take effect, and the dispersion of particle swarm can be 

ensured. Experimental results have shown that MPSO not only can solve the problem 

brought by the wind farm integration, but also has better global astringency. 
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