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Abstract 

This paper considers the global practical tracking problem by state feedback for a 

class of high-order non-linear systems with more general uncertainties, to which the 

existing control methods are inapplicable. We successfully propose a new tracking 

control design scheme for the system studied by introducing sign function and necessarily 

modifying the method of adding a power integrator. It is shown that the designed 

controller guarantees that all states of the resulting closed-loop system are globally 

bounded and the tracking error remains prescribed arbitrarily small after a finite time. 

 

Keywords: uncertain nonlinear systems, practical output tracking, sign function, state 

feedback 

 

1. Introduction 

The output tracking problem is one of most important subjects in control theory and its 

applications, and it has been extensively studied for the last three decades. Its basic 

problem is to design a feedback control law making the controlled output track a given 

reference signal as much as possible. The output tracking in the usual case is in the sense 

of “asymptotic” where the tracking error converges to zero as time goes to the infinity, 

and this asymptotic tracking problem for time-invariant linear systems was completely 

solved about thirty years ago.  

The corresponding problem for nonlinear systems was also carried out by a number of 

researchers at least over the past twenty years [1, 2], etc.  

However, in the case of inherently nonlinear systems where the linearized systems may 

not be stabilizable and/or detectable, the tracking problem and even the stabilization 

problem become much more complicated and difficult to solve. 

Thus, to overcome this difficulty, a new concept called practical output tracking for 

tracking problem has been introduced and various results in the framework of the new 

concept have been reported see [3-9], as well as the references therein. 
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This paper deals with the practical output tracking problem with a state feedback for a 

class of high-order nonlinear systems having the following form: 
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where T

1( , , ) n

nz z z R  and u R  are the system state and the control input, 

respectively. For 1,i  …, ,n ( , , )i t z u are unknown continuous functions and 

1 :i oddp R  { :p q R p and q  are odd integers, p q } ( 1, , 1)i n   are said to be 

the high orders of the system, with np  obviously equal to one (which is not a limitation 

since we can easily set : np
v u  in the case of non-unity np ). 

We first introduce definition of the practical output tracking problem. 

Consider the system (1) and assume that the reference signal ( )ry t  be a time-varying 
1C -

bounded on [0, ) . Then, the global practical output tracking problem by a state 

controller is formulated as follows: For any given real number 0  , design a continuous 

controller having the following structure  

( , ( )),ru u z y t                                                 (2) 

such that 

(i)      all the states of the closed-loop system (1) and (2) are well-defined on [0, )  and 

 globally bounded; 

(ii) the global practical output tracking is achieved, that is, for every (0) nz R   there  

is a finite time ( , (0)): 0zT T   , such that the output ( )y t of the closed loop 

system (1) with (2) satisfies 

1( ) ( ) ( ) ( ) , 0.r ry t y t z t y t t T                      (3) 

   The problem of output tracking control of nonlinear systems is one of the most 

important and challenging problems in the field of nonlinear control and lots of efforts 

have been made during the last decades, see [1-11], as well as the references therein. 

With the help of the nonlinear output regulator theory [1], [2] and the method of adding a 

power integrator [12-14], series of research results have been obtained [3-5]. For details, 

in [3], practical output tracking via smooth state feedback for nonlinear systems was 

considered. Further, in [7-9], the practical output feedback tracking problem was also 

investigated for a class of nonlinear systems with higher-order growing unmeasurable 

states, extending the results on stabilization in [15-18].  

In [7-9], the following condition on the uncertain term ( )i   is assumed: 

    1( ) ( )

1( , , ) i i ir r r r

i it z u C z z C
 


 

                              (4) 

where 0C  , 0   or 1 2 12 (2 1) 0np p p n      are constants and ir ’s are defined 

as 1 11, 0,i i ir r p r     1, ,i n . However, (4) needs the condition of l m   

with l being an even integer and m being an odd integer, which results in ( )i jr r  in (4) 

being always a ratio of odd integers. Naturally, an interesting problem may be proposed: 
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(a) Is it possible to relax the assumption on   in (4)? (b) Under the weaker assumption, 

can one design an output tracking controller? 

In this paper, by introducing the sign function approach, and overcoming several 

troublesome obstacles in the design and analysis procedure, we focus on solving the 

above problem under the assumption of the restriction on   being relaxed to any 

real number. 

 

2. Mathematical Preliminaries 

At first, we give the following notations which will be used in this study. 

Notations: R
 denotes the set of all the nonnegative real numbers and 

nR  denotes the 

real 𝑛-dimensional space. For any vector 
1( , , )T n

nx x x R  , denote  

1: ( , , ) ,T i

i ix x x R   1, ,i n ,  2

1
:

n

ii
x x


  . 

A sign function sgn( )x  is defined as: sgn( ) 1x   if 0x  , sgn( ) 0x   if 0x  , and 

sgn( ) 1x    if 0x  . 

In order to solve the global practical output tracking problem, we made the following 

assumption: 

Assumption1 For 1, ,i n , there are smooth functions 1( , , ),ij iz z 1,2j   and  

 1 11
1 ,0

n

ll
p p 

    such that 

 1( ) ( )

1 1 1 2 1( , , ) ( , , ) ( , , )i i ir r r r

i i i i i it z u z z z z z z
 

  
 

        (5) 

where ,

ir s defined as  

1 11, 0, 1, ,i i ir r p r i n     .                                   (6) 

Now, we introduce six technical lemmas which will play an important role and be 

frequently used in the later control design. 

Lemma1[3]. For any real numbers 0, 0x y  and 1m  , the following inequality 

holds: 

    
1

1
mm

x y x m m y


   .. 

Lemma2[19]. For all ,x y R  and a constant 1p   the following inequalities holds: 

(i) 12
p p p px y x y   ,  

 
1 1 1p p p

x y x y  
   

11
2

pp p
x y


   

If 
1

oddp R ,  then 

((iiii))  
12

p p p px y x y    ,   

  111 1 2 .
pp pp px y x y


     
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Lemma3[19]. Let ,c d be positive constants. Then, for any real-valued 

function ( , ) 0x y  , the following inequality holds: 

( , ) ( , )
c d c d c dc dc d

x y x y x x y y
c d c d

 
  

 
..  

Lemma4[20].  For ,x y R  and 0 1p   the following inequality holds 

 
p p p

x y x y   .  

When 1,p a b  where 0a  and 0b  are odd integers 

12 .
pp p px y x y    

Lemma5[21]. If 1

oddp a b R  with 1a b   being some real numbers, then for any 

,x y R  

1
1 12 sgn( ) sgn( )

b
a ap p bx y x x y y    

Lemma6[6]. If  : , ( )f a b R a b   is monotone continuous and satisfies ( ) 0f a  , 

then 

( ) ( )
b

a
f x dx f b b a   . 

 

3.  Construction of Tracking Control 

In this section, we will present a recursive design approach to construct the 

tracking control for system (1). For simplicity, we denote  sgn( ) :x x x


 for any 

R   and x R . 

The following theorem is the main result of this paper. 

Theorem 1.  Let ( )ry t be a reference signal whose derivative ( )ry t  is also bounded. 

Then, under Assumption1, the global practical output tracking problem of the 

system (1) is solvable by a continuous state feedback controller of the form (2). 

Proof:  The inductive proof relies on the simultaneous construction of a 
1C  Lyapunov 

function which is positive define and proper, as well as a homogeneous-like controller at 

each iteration. 

Let 1 1 rx z y  and given , 2, ,i ix z i n  . Then, we have 
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                         (7) 

Initial Step.  Let 1 1[ ]x   and construct the Lyapunov function as  

1
2 12

1 1 1 1
0

( ) ( )
x

r p
V x W x s ds


   , 
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where  

   
2 1

1 11

*
1

2
11 *

1 1 1

r px rr

x
W x s x ds



         

 and 
1 0x   for convenience. Note that 

1V  is 
1,C positive definite and proper.  

A direct calculation gives 

2 1 12

1 1 1 2 1 1 2( ) ( , , , , , ) ( )r p p

r n rV x x x t x y x x u y t       .           (8) 

Since ( )ry t and ( )ry t  are bounded and by Assumption1 and Lemmas1-6, it can be shown 

that there is a smooth functions 
1 1( )x such that  

1 1

1 1 1 1

1 1

( )

1 2 11 1 1 12 1

( ) ( )

11 1 1 11 1 12 1

( )

1 1 1 1 1

( , , , , ) ( ) ( )

( ) ( ) ( )

( ) ( )



 



       

   

 

r r

r n r r r r

r r r r

r r

t x y x x u y x y x y x y M

x x x M x M

x x x



 



  

  

 

 

satisfying 

   2 1 1 2 1 1 12 * 2 * 2

1 1 1 2 1 2 2 1 11 1 1 1( ) ( ) ( )
r p p r p p p

V x x x x x x x x x   
      , 

where 𝛿 > 0 is any real constant,  

 
 

 

2 1 2 12 1
(2 )2 2

2 1 1 1 2 1
1 1

2 1

2 ( )
( )

2 2

r p r pr p

r p x r p
x

r p







  

        
 

and  

1 1( )

1 1 11 1 12 1( ) ( ) ( )
r rx x M x M  

   . 

Define a smooth positive function 1 1( )x  such that 1 1 1 1 1 1( ) ( ) ( )x x x    . Then, we 

have 

     2 1 2 11 1 1
2 2* * 2

1 1 1 2 1 2 2 1 1 1( ) ( ) .
r p r pp p p

V x x x x x x   
 

      

If we take the virtual controller 
*

2x  as 

     22 2 2*

2 1 1 1 1 1 1 ,
rr r rx x x x                                            (9) 

where     2 11

1 1 1 1( ) ,
r p

x n x    then it follows that 

   2 1 1 1
2 *2

1 1 1 1 2 2( ) .
r p p p

V x nx x x 


                              (10) 

Inductive Step.  Suppose at the (k-1)-th step, there is a 
1C , positive definite and proper 

Lyapunov function  1 1 1, ,k kV x x  , which is positive definite and proper, and a set of 

virtual controllers 
* *

1 , , kx x  defined by 

 

    

   

11

22 22

11* *

1 1 1 1

11* *

2 1 1 1 2 2 2

11* *

1 1 1

0, ,

, ,

( ) , ,
kk kk

rr

rr rr

rr rr

k k k k k k k

x x x

x x x x

x x x x



  

    

     

      

      

                    (11) 
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with  , 1 1,  i ix i k  being smooth positive functions, such that 

   

   1 1 1

2 2

1 1 1 1

2 *

1

( 2)

( 1) .
k k k k

k k k

r p p p

k k k

V x n k

x x k

 

   

  





     

   
                     (12) 

We claim that (12) also holds at Step k. To prove this claim, we choose the following 

Lyapunov function  

     1 1k k k k k kV x V x W x                                                   (13) 

where  

   
1

*

2
11 *

k k
k kk

k

r px rr

k k k
x

W x s x ds


        . 

Noting that 12 1k kr p  and using a similar method as in [21], ( )kV   can be shown to be 

1C , proper and positive definite. Moreover, we can obtain 

   
 1

*

1
*

1
11 *

12

k

k k
k kk

k

r

r p kx rrk
k k k

x
i i

x
W

r p s x ds
x x





               ,             (14) 

   
1

1

2
11 2*

k k
kk k k

r p
rr r pk

k k

k

W
x x

x






        

                        (15) 

where 1, , 1i k  , and there is a known constant 0L  , such that  

  12
* .

k kr p

k k kW L x x


                                                (16) 

Using (12)–(15), it follows that 

 

     

   

     

1 1 1

1

1

1
2 *2

1

1

2 *

1

1
2 *

1 1 1

1

( 2)

( 1) ( )

( )

k k k k

k k k

k ki k k

k
r p p p

k k i k k k

i

r p p

k k k

k
r pp p pk

i i k k k

i i

V x n k x x

k x

W
x x x

x

 

  

 

  



















  



     

    


    







             (17) 

for a virtual controller 
*

1
kp

kx   to be determined later. In order to proceed further, an 

appropriate bounding estimate should be given for the last three terms on the right hand 

side of inequality (17). This is accomplished in the following three facts whose technical 

proofs are given in the appendix.  

Fact 1:  There exists a positive constant ka  such that 

   1 1 1
2 * 2 2

1 1 1

1

3

k k k k
r p p p

k k k k k kx x a    


    . 

Fact 2:  There exists a nonnegative smooth function ( )k kb x  such that 

  1

1
2 2 2

1 2

1

1 1
( , , , , , ) ( ) .

3 2








   
k k

k
r p

k k r k i k k k

i

t x y x x u b x      

Fact 3:  There exists a nonnegative smooth functions ( )k kc x  such that 
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 
1 1

2 2

1

1 1

1 1
( ) ( )

3 2
i

k k
pk
i i i k k k

i ii

W
x c x

x
   

 



 


    


  . 

Substituting the results of the previous into (17), we arrive at 

   

   

1

1

1
2 *2

1

1

2 *2

1 1

( 1)

( ) ,

k k k

k k k k

k
r p p

k k i k k

i

r p p p

k k k k k k

V x n k x

x x x k

 

   














 

    

   


                  (18) 

where  

( ) ( ) ( )k k k k k k kx a b x c x     

is a smooth positive function. 

Now, it easy to see that the virtual controller  

 1 1*

1 ( ) ,k kr r

k k k kx x  

                   (19) 

where    11

( ) 1 ( )
k kr p

k k k kx n k x 


    is a smooth function, renders 

     12 *2

1 1 1

1

, , ( 1)
k k k k

k
r p p p

k k i k k k

i

V x x n k x x k  

 



       . 

This completes the inductive step.  

Using the inductive argument above, we can conclude that at the 𝑛-th step, there exists a 

continuous state feedback controller of the form 

  11*

1 ( ) nn
rr

n n n nu x x  

                                              (20) 

with the 
1C , proper and positive definite Lyapunov function  1 2, ,n nV x x x  constructed 

via the inductive procedure, we arrive at  

  2

1

1

, , .
n

n n i

i

V x x n 


                                              (21) 

Noting that  1 11
1 ,0

n

ll
p p 

    and 1 ,k k kr p r    we have 10 1k kr p  . 

Moreover, recall that 1 1

1

( , , ) ( , , )
n

n k k

k

V x x W x x


 , where kW ’s are defined in (13). 

Then, it follows from Lemma5, we have 

 12 2 21*( ) 2 2 .k k k
r p r

k k k k k k kW x x x



   

            (22) 

So we have the following estimate: 

1 1

( ) ( ) 2 .
 

  
n n

n n k k k

k k

V x W x


                                       (23) 

Let (2 ) 2   . By  1 11
1 ,0

n

ll
p p 

   ,  1 0,1  . With (21) and (23) in 

mind, by Lemma4, it is not difficult to obtain that 

    
1

2n n n nV x V x n


                                         (24) 
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It will show that the state ( )x t  of closed-loop system (7) is well-defined on  0, and 

globally bounded. First, introduce the following set 

  : ( ) ( ) 2 2n

n nS x t R V x n


   ,                           (25) 

and let ( )x t  be the trajectory of (7) with an initial state (0)x . If ( )x t S , then it follows 

from (25) that 

    
1

2 0.n n n nV x V x n n


                                    (26) 

This implies that, as long as  ( )x t S ,  ( ( ))nV x t   is strictly decreasing with time t, and 

hence ( )x t  must enter the complement set 
nR S  in a finite time 0T   and stay there 

forever. Thus, the solution ( )x t  of the system (7) is well-defined and globally bounded on 

 0, . Next, it will be shown that 

1( ) ( ) ( ) ( ) , 0.r ry t y t z t y t t T                                (27) 

This is also easily shown from (15), (24) and by tuning the parameter  :  

 1( ) ( ) ( ) ( ( )) 2 2 .r ny t y t x t V x t n


       

Therefore, for any 0  , there is globally practical output-tracking such that (27) 

holds. This completes the proof of Theorem 1. 

 

4. Conclusions 

In this paper, the global practical tracking problem has been studied for a class of  high-

order non-linear systems with more general uncertainties and presented a continuous state 

feedback output tracking controller for a class of high-order nonlinear systems under 

weaker condition. The controller guarantees that the states of the closed-loop system are 

globally bounded, while the tracking error can be bounded by any given positive number 

after a finite time. It should be noted that the proposed controller can only work well 

when the whole state vector is measurable. Therefore, a natural and more interesting 

problem is how to design output feedback output tracking controller for the systems 

studied in the paper if only partial state vector being measurable, which is now under our 

further investigation. 

 

Appendix 

Proof of Fact 1:  Noting that  1 11
1 ,0

n

ll
p p 

    and 1 1 ,k k kr p r     we have 

10 1k kr p   . Using (11), it follows from Lemma5 that 

   

 

1 1
1 1

1

1

11

* 1 *1

111 *

1

2

2 .

 
 











  

    



k k k k
k k k k

k k
kkk k

k kk k

r p r p
p p r r

k k k k

r p
rrr p

k k

r pr p

x x x x

x x



                                     (A1) 

By (A.1) and Lemma3, it can be obtained that 
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   1 1 11 1 1
2 2* 1

1 1

2 2

1

2

1

3

    
 

 



 

 

k k k k k kk k k k
r p r p r pp p r p

k k k k k

k k k

x x

a

  

 
                              (A2) 

where 0ka   is a constant. 

Proof of Fact 2 : According to (11), Assumption 1, and Lemma2, it follows that  

 

 

 

1 1 2 2

1
1

1 1
1 1

1

1 2

( ) ( ) ( )

1 2 1 2

1 1 1 1

1

1

1 1 1

1

1

( , , , )

( , , )

( , , ) ( , , )

2 ( , , )

( , , )

k k

k k
k k

k k k k
k k k k

k

k r k

r r r r r r

k r k r k

k r p
r p

k k j j j k k

j

k
r p r pr p r p

k k j j j

j

r

k k

x y x x

x y x x x y x x

x x x x M

x x

x x M

  





    

   






 
 



  

 





 





     

  

 







1
1

1 1

1

( , , ) ( , , )

k

k k
k k

p

k
r p r p

k k j k k

j

x x x x M  






 

       (A3) 

where 0 00, 0   and  1 *11

11
( ) 2 1 ( ) 0k k k k

kr p r p

k j kj
  


      is a smooth function. 

Using (A.3) and Lemmas3 and 5, we obtain, 

  1

11

1 1

2

1 2

2

1

1

2

1

1
2 2

1

1

( , , , )

( , , )

( , , )

1 1
( , , ) ,

3 2

k k

k kk k

k k k k

r p

k k r k

k
r pr p

k k k j

j

r p r p

k k k

k

j k k k

j

x y x x

x x

x x M

b x x

 

  

 

  





 



















  





                (A4) 

where 1( , , ) 0k kb x x   is a smooth function. 

Proof of Fact 3 : Note that 

1
1

1 1
*

1

1

,
j j

k
r r

j j j j j

j

x B x 








                                             (A5) 

where 1 , 1, , 1.j k jB j k     

Using (A.5), after simple calculations, it is not hard to obtain that for 1, , 1j k  , 

1
*

1
1 1 1

1

1
.

k

j j

r
k

r rk l
j j j

jj j j

x B
x B x

x x r






         
                               (A6) 

By (14), (15), (A.3), (A.6), and Lemmas2 and 5, we get 
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where 0jB   is a smooth function. 

Noting that 1j j jr p r    , by using Lemma3, we have 
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where ( )kc   is a smooth function. 
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