
International Journal of Advanced Science and Technology

Vol.61, (2013), pp.53-62

http://dx.doi.org/10.14257/ijast.2013.61.06

ISSN: 2005-4238 IJAST

Copyright ⓒ 2013 SERSC

Design and Simulation of FFT Processor Using Radix-4 Algorithm

Using FPGA

N. Amarnath Reddy, D. Srinivasa Rao and J. Venkata Suman

GMR Institute of Technology

Asst. Prof. Dept. of ECE, GMRIT, RAJAM

amar.nagu02@gmail.com, srinivasarao.d@gmrit.org, venkatasuman.j@gmrit.org

Abstract

A parallel and pipelined Fast Fourier Transform (FFT) processor for use in the

Orthogonal Frequency division Multiplexer (OFDM) and WLAN, unlike being stored in

the traditional ROM. The twiddle factors in our pipelined FFT processor can be accessed

directly. A novel simple address mapping scheme and the modified radix 4 FFT also

proposed. FPGA was majorly used to develop the ASIC IC’s to which was implemented.

Here we simulated and synthesized the 256- point FFT with radix-4 using VHDL coding

and 64 point FFT Hardware implementation we designed code using System C. Finally,

the pipelined 256-point FFT processor can be completely implemented within 19.103ns.

Keywords- FFT, DIT, Radix- 4, FPGA

1. INTRODUCTION

A fast Fourier transform (FFT) is an algorithm to compute the discrete Fourier

transform (DFT) and it’s inverse. A Fourier transform converts time (or space) to

frequency and vice versa; FFT rapidly computes such transformations. As a result, fast

Fourier transforms are widely used for many applications in engineering, science, and

mathematics. The basic ideas were popularized in 1965, but some FFTs had been

previously known as early as 1805. Fast Fourier transforms have been described as "the

most important numerical algorithm of our lifetime".

There are many different FFT algorithms involving a wide range of mathematics, from

simple complex-number arithmetic to group theory and number theory; this article gives

an overview of the available techniques and some of their general properties, while the

specific algorithms are described in subsidiary articles linked below.

The discrete Fourier transform is obtained by decomposing a sequence of values into

components of different frequencies. This operation is useful in many fields (see DFT for

properties and applications of the transform) but computing it directly from the definition

is often too slow to be practical. An FFT is a way to compute the same result more

quickly: computing the DFT of N points in the naive way, using the definition, takes

O(N
2
) arithmetical operations, while a FFT can compute the same DFT in only O(N log

N) operations. The difference in speed can be enormous, especially for long data sets

where N may be in the thousands or millions. In practice, the computation time can be

reduced by several orders of magnitude in such cases, and the improvement is

roughly proportional to N / log(N). This huge improvement made the calculation of the

DFT practical; FFTs are of great importance to a wide variety of applications, from digital

signal processing and solving partial differential equations to algorithms for

quick multiplication of large integers.

The best-known FFT [2] algorithms depend upon the factorization of N, but there are

FFTs with O(N log N) complexity for all N, even for prime N. Many FFT algorithms only

mailto:srinivasarao.d@gmrit.org
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Discrete_Fourier_transform
http://en.wikipedia.org/wiki/Discrete_Fourier_transform
http://en.wikipedia.org/wiki/Fourier_analysis
http://en.wikipedia.org/wiki/Discrete_Fourier_transform#Applications
http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Complex_number
http://en.wikipedia.org/wiki/Group_theory
http://en.wikipedia.org/wiki/Number_theory
http://en.wikipedia.org/wiki/Discrete_Fourier_transform
http://en.wikipedia.org/wiki/Sequence
http://en.wikipedia.org/wiki/Orders_of_magnitude
http://en.wikipedia.org/wiki/Proportionality_(mathematics)
http://en.wikipedia.org/wiki/Digital_signal_processing
http://en.wikipedia.org/wiki/Digital_signal_processing
http://en.wikipedia.org/wiki/Partial_differential_equation
http://en.wikipedia.org/wiki/Multiplication_algorithm
http://en.wikipedia.org/wiki/Factorization
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Prime_number

International Journal of Advanced Science and Technology

Vol.61, (2013)

54 Copyright ⓒ 2013 SERSC

depend on the fact that N

i

e

2
 is an N-the primitive root of unity, and thus can be applied to

analogous transforms over any finite field, such as number-theoretic transforms. Since the

inverse DFT is the same as the DFT, but with the opposite sign in the exponent and a 1/N

factor, any FFT algorithm can easily be adapted for it.

An FFT computes the DFT [5] and produces exactly the same result as evaluating the

DFT definition directly; the only difference is that an FFT is much faster. Let x0... xN-

1 be complex numbers. The DFT is defined by the formula

1N.......0k
1N

0n

N

n
kj2

enxkX 





 ……….(1)

Evaluating this definition directly requires O(N
2
) operations: there are N outputs Xk,

and each output requires a sum of N terms. An FFT is any method to compute the same

results in O(N log N) operations. More precisely, all known FFT algorithms require Θ(N

log N) operations (technically, O only denotes an upper bound), although there is no

known proof that a lower complexity score is impossible.(Johnson and Frigo, 2007)

To illustrate the savings of an FFT, consider the count of complex multiplications and

additions. Evaluating the DFT's sums directly involves N
2
 complex multiplications and

N(N−1) complex additions [of which O(N) operations can be saved by eliminating trivial

operations such as multiplications by 1]. The well-known radix-2 Cooley–Turkey

algorithm, for N a power of 2, can compute the same result with only (N/2)log2(N)

complex multiplications (again, ignoring simplifications of multiplications by 1 and

similar) and Nlog2(N) complex[12] additions. In practice, actual performance on modern

computers is usually dominated by factors other than the speed of arithmetic operations

and the analysis is a complicated subject [4] (see e.g., Frigo & Johnson, 2005), but the

overall improvement from O(N
2
) to O(N log N) remains.

The naive implementation of the N-point digital Fourier transform involves calculating

the scalar product of the sample buffer (treated as an N-dimensional vector) with N

separate basis vectors. Since each scalar product involves N multiplications and N

additions, the total time is proportional to N
2
 (in other words, it's an O(N

2
) algorithm).

However, it turns out that by cleverly re-arranging these operations, one can optimize the

algorithm down to O(N log(N)), which for large N makes a huge difference. The

optimized version of the algorithm is called the fast Fourier transform, or the FFT.

The standard strategy to speed up an algorithm is to divide and conquer. We have to

find some way to group the terms in the equation

]n[v

1N....0n

kn
N

W]k[V 




Let's see what happens when we separate odd ns from even ns (from now on, let's

assume that N is even):

]n[voddn
kn
N

W]n[vevenn
kn
N

W]k[V 

]12/N....0r 1r2[V
)1r2(k

N
W12/N....0r]r2[V

)r2(k
N

W   


 

]12/N....0r 1r2[V
)r2(k

N
Wk

N
W12/N....0r]r2[V

)r2(k
N

W    









  








 ]12/N....0r 1r2[V

)r(k
2/N

Wk
N

W12/N....0r]r2[V
)r(k
2/N

W

Where we have used one crucial identity:

n/kr2*i2e
)r2(k

N
W 

http://en.wikipedia.org/wiki/Primitive_root_of_unity
http://en.wikipedia.org/wiki/Finite_field
http://en.wikipedia.org/wiki/Number-theoretic_transform
http://en.wikipedia.org/wiki/Discrete_Fourier_transform
http://en.wikipedia.org/wiki/Complex_number
http://en.wikipedia.org/wiki/Big_O_notation#Use_in_computer_science
http://en.wikipedia.org/wiki/Upper_bound
http://en.wikipedia.org/wiki/Fast_Fourier_transform#Cooley.E2.80.93Tukey_algorithm
http://en.wikipedia.org/wiki/Fast_Fourier_transform#Cooley.E2.80.93Tukey_algorithm

International Journal of Advanced Science and Technology

Vol.61, (2013)

Copyright ⓒ 2013 SERSC 55

kr
2/N

W)2/n/(kr2*i2e 

Notice an interesting thing: the two sums are nothing else but N/2-point Fourier

transforms of, respectively, the even subset and the odd subset of samples. Terms with k

greater or equal N/2 can be reduced using another identity:

m
2/N

W2/n
2/N

Wm
2/N

W2/nm
2/N

W 
, 1)2(sini)2cos(i2em

mW 

If we start with N that is a power of 2, we can apply this subdivision recursively until

we get down to 2-point transforms. We can also go backwards, starting with the 2-point

transform:

1,0k],1[vk*1
2

W]0[yk*0
2

W]k[V 

The two components are:

]1[V1
2

W]0[v]1[V1
2

W]0[V0
2

W]1[V],1[V0
2

W]0[v]1[V0
2

W]0[V0
2

W]0[V 

We can represent the two equations for the components of the 2-point transform

graphically using the, so called, butterfly

Figure 1. Butterfly Calculation

Figure 1.1. 4-point Fourier Transform

Figure 1.2. Generic Butterfly Graph

International Journal of Advanced Science and Technology

Vol.61, (2013)

56 Copyright ⓒ 2013 SERSC

Furthermore, using the divide and conquer strategy, a 4-point transform can be reduced

to two 2-point transforms: one for even elements, one for odd elements. The odd one will

be multiplied by W4
k
 Diagrammatically. This can be represented as two levels of

butterflies. Notice that using the identity WN/2
n
 = WN

2n
, we can always express all the

multipliers as powers of the same WN (in this case we choose N=4).

2. RADIX-4 FFT

The decimation-in-time (DIT) radix-4 FFT recursively partitions a DFT [5] into four

quarter-length DFTs of groups of every fourth time sample. The outputs of these shorter

FFTs are reused to compute many outputs, thus greatly reducing the total computational

cost. The radix-4 decimation-in-frequency FFT groups every fourth output sample into

shorter-length DFTs to save computations. The radix-4 FFTs require only 75% as many

complex multiplies [6] as the radix-2 FFTs. The radix-4 decimation-in-

time and decimation-in-frequency fast Fourier transforms (FFTs) gain their speed by

reusing the results of smaller, intermediate computations to compute multiple DFT[23]

frequency outputs. The radix-4 decimation-in-time algorithm rearranges the discrete

Fourier transform (DFT) equation into four parts. The DFT[22] sums over all groups of

the every fourth discrete-time index n=[0,4,8,…,N−4], n=[1,5,9,…,N−3],

n=[2,6,10,…,N−2] and n=[3,7,11,…,N−1] as in Equation 1. (This works out only when

the FFT length is a multiple of four.) Just as in the radix-2 decimation-in-time[22] FFT,

further mathematical manipulation shows that the length-N DFT can be computed as the

sum of the outputs of four length-N4 DFTs, of the even-indexed and odd-indexed

discrete-time samples, respectively, where three of them are multiplied by so-

called twiddle factors
k3

N
Wand,k2

N
W,)kN2i(ek

N
W 

Figure 2. Radix-4 DIT Structure

http://cnx.org/content/m12016/latest/
http://cnx.org/content/m12016/latest/
http://cnx.org/content/m12018/latest/
http://cnx.org/content/m12026/latest/
http://cnx.org/content/m12019/latest/
http://cnx.org/content/m12019/latest/
http://cnx.org/content/m12027/latest/#eq1
http://cnx.org/content/m12016/latest/

International Journal of Advanced Science and Technology

Vol.61, (2013)

Copyright ⓒ 2013 SERSC 57

This is called decimation in time because the time samples are rearranged in alternating

groups and a radix-4 algorithm because there are four groups. Figure 1 graphically

illustrates this form of the DFT computation. It is this reuse that gives the radix-4 FFT its

efficiency. The computations involved with each group of four frequency samples

constitute the radix-4 butterfly, which is shown in Figure 2. Through further

rearrangement, it can be shown that this computation can be simplified to three twiddle-

factor multiplies and a length-4 DFT! The theory of multi-dimensional index maps shows

that this must be the case, and that FFTs of any factorable length may consist of

successive stages of shorter-length FFT [25] with twiddle-factor multiplications in

between.

3. FPGA Implementation

The Field Programmable Gate Array is majorly used for generation ASIC IC’s to the

computations. They offer more speed in execution process. SO, for generation ASIC IC’s

FPGA’s [21] are majorly used. The 64 FFT with radix 4 is simulated and synthesized as

well as implemented on the FPGA of below configuration.

Table 3.1. Configuration of FPGA

Property Name Value

Family Spartan 3

Device XC3S200

Package TQG144

Speed Grade -4

4. Simulation Results:

The RTL view of the butterfly structure obtained after the simulation of the 256-point

FFT block, Decimation in time domain is shown next and also the internal architecture of

the butterfly block is shown.

Figure 4.1. RTL View of a Butterfly Component Used In 256-Point FFT

http://cnx.org/content/m12027/latest/#fig1
http://cnx.org/content/m12027/latest/#fig2
http://cnx.org/content/m12025/latest/

International Journal of Advanced Science and Technology

Vol.61, (2013)

58 Copyright ⓒ 2013 SERSC

Figure 4.2. Internal Architecture of the Butterfly Component

Figure 4.3. Simulation result of 256 FFT

Figure 4.4. Synthesis Report

International Journal of Advanced Science and Technology

Vol.61, (2013)

Copyright ⓒ 2013 SERSC 59

Figure 4.5. Timing Report of 256 FFT

Hardware implementation was through system C coding and its results are as

follows

Figure 4.6. Timing Report on Hardware

Figure 4.7. Result of 64-point FFT on Hardware Implementation

5. Conclusion

In this project it is shown that a baseband ASIC can be fast and at the same time

flexible with a low power consumption. The term fast do not refer to extreme clock

frequencies but to the fact that no part of the designs needs more than one clock cycle to

process a sample once the pipe is filled. Hence, the design does not need to be clocked

any faster than the requested bandwidth and compared to modern CMOS technology this

is a low number, in the order of 5-100 MHz There are several advantages with a low

clock frequency, firs it is possible use a low power/low speed cell library with low static

leakage current and secondly, it is easier to create a clock tree. Since flexibility is

achieved with independent modules, where the operation mode decides if a module

should be used or not. The unused modules are not clocked and hence only consume static

International Journal of Advanced Science and Technology

Vol.61, (2013)

60 Copyright ⓒ 2013 SERSC

leakage power and when you implement 256 point FFT in FPGA than better results are

out.

References

[1] P. D. Welch, “A fixed-point fast Fourier transform error analysis”, IEEE Trans. Audio Electroacoustics,

10.1109/TAU.1969.1162035, vol. 17, no. 2, (1969), pp. 151–157.

[2] N. Brenner and C. Rader, “A New Principle for Fast Fourier Transformation”, IEEE Acoustics, Speech

& Signal Processing, vol. 24, no. 3, pp. 264-266.

[3] P. Duhamel, “Algorithms meeting the lower bounds on the multiplicative complexity of length-

DFTs and their connection with practical algorithms”, IEEE Trans. Acoust. Speech. Sig. Proc., 38 (9):

1504–151:10.1109/29.60070, (1990).

[4] M. Frigo and S. G. Johnson, “The Design and Implementation of FFTW3”, Proceedings of the IEEE 93,

(2005), pp. 216–231.

[5] S. B. Weinstein and P. M. Ebert, “Data transmission by frequency division multiplexing using the

discrete Fourier transform”, IEEE Transactions on Communications, vol. 19, (1971) October, pp. 628–

634.

[6] A. Peled and A. Ruiz, “Frequency domain data Transmission using reduced computational complexity

algorithms”, Int. Conf. Acoustic, Speech, Signal Processing, Denver, CO, (1980), pp. 964-967.

[7] L. J. Cimini, “Analysis and Simulation of a Digital Mobile Channel Using Orthogonal Frequency

Division Multiplexing”, IEEE Transactions on Communications, vol. 33, (1985) July, pp. 665-675.

[8] ETSI TS 101 475, “Broadband Radio Access Networks (BRAN); HIPERLAN Type 2 Physical (PHY)

layer, v1.1.1,” 2000, http://portal.etsi.org/bran/.

[9] IEEEstd 802.11a, “High-speed Physical Layer in 5 GHz Band”, http://ieee802.org/, (1999).

[10] J. Bingham, “Multicarrier Modulation for Data Transmission: An Idea Whose Time Has Come”, IEEE

Communications Magazine, vol. 8, (1990) May, pp. 5-14.

[11] O. Edfors, M. Sandell, J. van de Beek, D. Landström and F. Sjöberg, “An introduction to orthogonal

frequency-division multiplexing”, TULEA 1996:16, Div. of Signal Processing, Luleå, Tech. Rep., a

University of Technology, Luleå, (1996).

[12] J. W. Cooley and J. W. Tukey, “An Algorithm for Machine Calculation of Complex Fourier Series,”

Math. Compute, vol. 19, (1965), pp. 297-301.

[13] R. Grunheid, E. Bolinth and H. Rohling, “A blockwise loading algorithm for the adaptive modulation

technique in OFDM systems”, Proc. of Vehicular Technology Conference, VTC 2001 Fall, Atlantic City,

NJ, USA, (2001) October 7-11, pp. 948-951.

[14] J. G. Proakis, “Digital Communications”, McGraw-Hill, (2001).

[15] M. Russel and G. Stuber, “Interchannel interference analysis of OFDM in a mobile environment”, Proc.

IEEE Vehic. Technol. Conf., vol. 2, Chicago, IL, (1995), pp. 820-824.

[16] N. Petersson, “Peak and power reduction in multicarrier systems”, licentiate thesis, Lund University,

Sweden, (2002).

[17] S. Johansson, “ASIC Implementation of an OFDM Synchronization Algorithm”, Licentiate Thesis,

Lund University, Sweden, (2000).

[18] R. Morrison, L. J. Cimini and S. K. Wilson, “On the Use of a Cyclic Extension in OFDM”, Proc. of

Vehicular Technology Conference”, VTC 2001 Fall, vol. 2, Atlantic City, NJ, USA, (2001) October 7-

11, pp. 664–668.

[19] J. Rabaey, A. Chandrakasan and B. Nikolic, “Digital Integrated Circuits, a Design Perspective”,

Prentice-Hall, (2003).

[20] K. Parhi, “VLSI Digital Signal Processing Systems”, New York, NY, USA: John Wiley & Sons, (1999).

[21] H. He and H. Guo, “The Realization of FFT AlgorithmBased on FPGA Co-processor”, Second

International Symposium on Intelligent Information Technology Application, vol. 3, (2008) December,

pp. 239-243.

[22] J. G. Proakis and D. G. Manolakis, “Digital Signal Processing”, Prentice-Hall, (1996).

[23] S. He, “Concurrent VLSI Architecture for DFT Computing and Algorithms for Multi-output Logic

Decomposition”, Ph.D. dissertation, Lund University, (1995).

[24] K. Nazifi and G. Hasson, “Industry’s First RTL Power Optimization Feature Significantly Improves

Power Compiler’s Quality of Results”, www.synopsys.com/news/pubs/rsvp/spr98/rsvp spr98 6.html,

(1998).

[25] W. Li and L. Wanhammar, “A Pipelined FFT Processor”, IEEE Workshop on Signal Processing

Systems, (1999), pp. 654–662.

[26] S. Johansson, S. He, and P. Nilsson, “Word length Optimization of a Pipelined FFT Processor”, Proc. of

42nd Midwest Symposium on Circuits and Systems, Las Cruces, NM, USA, (1999) August 8-11.

http://dx.doi.org/10.1109%2FTAU.1969.1162035
http://dx.doi.org/10.1109%2F29.60070
http://fftw.org/fftw-paper-ieee.pdf

International Journal of Advanced Science and Technology

Vol.61, (2013)

Copyright ⓒ 2013 SERSC 61

Authors

Nagu Amarnath Reddy Pursuing M.Tech (VLSI & ES) in

GMRIT, Rajam, A.P, India and Received B.Tech (ECE) from

Newton’s institute of engineering under JNTUK. Major areas are

interested in DSP and VLSI, ES.

D. Srinivasa RaO has completed B.Tech in Electronics and

Communication Engineering from JNTU, Hyderabad. He completed

M.E from Anna University with specialization in Communication

Systems. Presently he is working as an Assistant Professor in

Department of ECE, GMR Institute of Technology, Rajam. Major

research areas include wireless communications, Information theory

and coding. He is Life Member of ISTE.

Jami Venkata Suman has completed B.Tech from Tontadarya

College of Engineering, under VTU, Belgaum, Karnataka. He

Received Master of Technology in VLSI System Design from

Annamacharya Institute of Technology and Sciences, Rajampet,

under JNTU, Hyderabad, A.P and Master of Business Administration

in HRM and MRKT from A.U, Visakhapatnam, A.P. He is currently

working as an Assistant Professor in the Department of Electronics

and Communication Engineering at GMR Institute of Technology,

Rajam, A.P .Major Research areas include Radar, Signal Processing and

VLSI. Life Member of ISTE.

http://www.jntu.ac.in/
http://www.jntu.ac.in/
http://www.jntu.ac.in/
http://www.jntu.ac.in/
http://www.jntu.ac.in/

International Journal of Advanced Science and Technology

Vol.61, (2013)

62 Copyright ⓒ 2013 SERSC

