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Abstract 

A parallel and pipelined Fast Fourier Transform (FFT) processor for use in the 

Orthogonal Frequency division Multiplexer (OFDM) and WLAN, unlike being stored in 

the traditional ROM. The twiddle factors in our pipelined FFT processor can be accessed 

directly. A novel simple address mapping scheme and the modified radix 4 FFT also 

proposed. FPGA was majorly used to develop the ASIC IC’s to which was implemented. 

Here we simulated and synthesized the 256- point FFT with radix-4 using VHDL coding 

and 64 point FFT Hardware implementation we designed code using System C. Finally, 

the pipelined 256-point FFT processor can be completely implemented within 19.103ns. 
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1. INTRODUCTION 

A fast Fourier transform (FFT) is an algorithm to compute the discrete Fourier 

transform (DFT) and it’s inverse. A Fourier transform converts time (or space) to 

frequency and vice versa; FFT rapidly computes such transformations. As a result, fast 

Fourier transforms are widely used for many applications in engineering, science, and 

mathematics. The basic ideas were popularized in 1965, but some FFTs had been 

previously known as early as 1805. Fast Fourier transforms have been described as "the 

most important numerical algorithm of our lifetime". 

There are many different FFT algorithms involving a wide range of mathematics, from 

simple complex-number arithmetic to group theory and number theory; this article gives 

an overview of the available techniques and some of their general properties, while the 

specific algorithms are described in subsidiary articles linked below. 

The discrete Fourier transform is obtained by decomposing a sequence of values into 

components of different frequencies. This operation is useful in many fields (see DFT for 

properties and applications of the transform) but computing it directly from the definition 

is often too slow to be practical. An FFT is a way to compute the same result more 

quickly: computing the DFT of N points in the naive way, using the definition, takes 

O(N
2
) arithmetical operations, while a FFT can compute the same DFT in only O(N log 

N) operations. The difference in speed can be enormous, especially for long data sets 

where N may be in the thousands or millions. In practice, the computation time can be 

reduced by several orders of magnitude in such cases, and the improvement is 

roughly proportional to N / log(N). This huge improvement made the calculation of the 

DFT practical; FFTs are of great importance to a wide variety of applications, from digital 

signal processing and solving partial differential equations to algorithms for 

quick multiplication of large integers. 

The best-known FFT [2] algorithms depend upon the factorization of N, but there are 

FFTs with O(N log N) complexity for all N, even for prime N. Many FFT algorithms only 
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depend on the fact that N

i

e

2
  is an N-the primitive root of unity, and thus can be applied to 

analogous transforms over any finite field, such as number-theoretic transforms. Since the 

inverse DFT is the same as the DFT, but with the opposite sign in the exponent and a 1/N 

factor, any FFT algorithm can easily be adapted for it. 

An FFT computes the DFT [5] and produces exactly the same result as evaluating the 

DFT definition directly; the only difference is that an FFT is much faster. Let x0... xN-

1 be complex numbers. The DFT is defined by the formula 

1N.......0k
1N

0n

N

n
kj2

enxkX 





  ……….(1) 

Evaluating this definition directly requires O(N
2
) operations: there are N outputs Xk, 

and each output requires a sum of N terms. An FFT is any method to compute the same 

results in O(N log N) operations. More precisely, all known FFT algorithms require Θ(N 

log N) operations (technically, O only denotes an upper bound), although there is no 

known proof that a lower complexity score is impossible.(Johnson and Frigo, 2007) 

To illustrate the savings of an FFT, consider the count of complex multiplications and 

additions. Evaluating the DFT's sums directly involves N
2
 complex multiplications and 

N(N−1) complex additions [of which O(N) operations can be saved by eliminating trivial 

operations such as multiplications by 1]. The well-known radix-2 Cooley–Turkey 

algorithm, for N a power of 2, can compute the same result with only (N/2)log2(N) 

complex multiplications (again, ignoring simplifications of multiplications by 1 and 

similar) and Nlog2(N) complex[12] additions. In practice, actual performance on modern 

computers is usually dominated by factors other than the speed of arithmetic operations 

and the analysis is a complicated subject [4] (see e.g., Frigo & Johnson, 2005), but the 

overall improvement from O(N
2
) to O(N log N) remains. 

The naive implementation of the N-point digital Fourier transform involves calculating 

the scalar product of the sample buffer (treated as an N-dimensional vector) with N 

separate basis vectors. Since each scalar product involves N multiplications and N 

additions, the total time is proportional to N
2
 (in other words, it's an O(N

2
) algorithm). 

However, it turns out that by cleverly re-arranging these operations, one can optimize the 

algorithm down to O(N log(N)), which for large N makes a huge difference. The 

optimized version of the algorithm is called the fast Fourier transform, or the FFT. 

The standard strategy to speed up an algorithm is to divide and conquer. We have to 

find some way to group the terms in the equation 
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Let's see what happens when we separate odd ns from even ns (from now on, let's 

assume that N is even): 
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Where we have used one crucial identity: 
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kr
2/N

W)2/n/(kr2*i2e   

Notice an interesting thing: the two sums are nothing else but N/2-point Fourier 

transforms of, respectively, the even subset and the odd subset of samples. Terms with k 

greater or equal N/2 can be reduced using another identity: 

 

m
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If we start with N that is a power of 2, we can apply this subdivision recursively until 

we get down to 2-point transforms. We can also go backwards, starting with the 2-point 

transform: 
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The two components are: 
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We can represent the two equations for the components of the 2-point transform 

graphically using the, so called, butterfly 

 

Figure 1. Butterfly Calculation 

 

Figure 1.1. 4-point Fourier Transform 

 

Figure 1.2. Generic Butterfly Graph 
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Furthermore, using the divide and conquer strategy, a 4-point transform can be reduced 

to two 2-point transforms: one for even elements, one for odd elements. The odd one will 

be multiplied by W4
k
 Diagrammatically. This can be represented as two levels of 

butterflies. Notice that using the identity WN/2
n
 = WN

2n
, we can always express all the 

multipliers as powers of the same WN (in this case we choose N=4). 

 

2. RADIX-4 FFT 

The decimation-in-time (DIT) radix-4 FFT recursively partitions a DFT [5] into four 

quarter-length DFTs of groups of every fourth time sample. The outputs of these shorter 

FFTs are reused to compute many outputs, thus greatly reducing the total computational 

cost. The radix-4 decimation-in-frequency FFT groups every fourth output sample into 

shorter-length DFTs to save computations. The radix-4 FFTs require only 75% as many 

complex multiplies [6] as the radix-2 FFTs. The radix-4 decimation-in-

time and decimation-in-frequency fast Fourier transforms (FFTs) gain their speed by 

reusing the results of smaller, intermediate computations to compute multiple DFT[23] 

frequency outputs. The radix-4 decimation-in-time algorithm rearranges the discrete 

Fourier transform (DFT) equation into four parts. The  DFT[22] sums over all groups of 

the every fourth discrete-time index n=[0,4,8,…,N−4], n=[1,5,9,…,N−3], 

n=[2,6,10,…,N−2] and n=[3,7,11,…,N−1] as in Equation 1. (This works out only when 

the FFT length is a multiple of four.) Just as in the radix-2 decimation-in-time[22] FFT, 

further mathematical manipulation shows that the length-N DFT can be computed as the 

sum of the outputs of four length-N4 DFTs, of the even-indexed and odd-indexed 

discrete-time samples, respectively, where three of them are multiplied by so-

called twiddle factors 
k3

N
Wand,k2

N
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Figure 2. Radix-4 DIT Structure 
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This is called decimation in time because the time samples are rearranged in alternating 

groups and a radix-4 algorithm because there are four groups. Figure 1 graphically 

illustrates this form of the DFT computation. It is this reuse that gives the radix-4 FFT its 

efficiency. The computations involved with each group of four frequency samples 

constitute the radix-4 butterfly, which is shown in Figure 2. Through further 

rearrangement, it can be shown that this computation can be simplified to three twiddle-

factor multiplies and a length-4 DFT! The theory of multi-dimensional index maps shows 

that this must be the case, and that FFTs of any factorable length may consist of 

successive stages of shorter-length FFT [25] with twiddle-factor multiplications in 

between. 

 

3. FPGA Implementation 

The Field Programmable Gate Array is majorly used for generation ASIC IC’s to the 

computations. They offer more speed in execution process. SO, for generation ASIC IC’s 

FPGA’s [21] are majorly used. The 64 FFT with radix 4 is simulated and synthesized as 

well as implemented on the FPGA of below configuration. 

Table 3.1. Configuration of FPGA 

Property Name  Value 

Family Spartan 3 

Device  XC3S200 

Package  TQG144 

Speed Grade -4 

 

4. Simulation Results: 

The RTL view of the butterfly structure obtained after the simulation of the 256-point 

FFT block, Decimation in time domain is shown next and also the internal architecture of 

the butterfly block is shown. 
 

 

Figure 4.1. RTL View of a Butterfly Component Used In 256-Point FFT 
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Figure 4.2. Internal Architecture of the Butterfly Component 

 

Figure 4.3. Simulation result of 256 FFT 

 

Figure 4.4. Synthesis Report 
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Figure 4.5. Timing Report of 256 FFT 

Hardware implementation was through system C coding and its results are as 

follows 
 

 

Figure 4.6. Timing Report on Hardware 

 

Figure 4.7. Result of 64-point FFT on Hardware Implementation 

5. Conclusion 

In this project it is shown that a baseband ASIC can be fast and at the same time 

flexible with a low power consumption. The term fast do not refer to extreme clock 

frequencies but to the fact that no part of the designs needs more than one clock cycle to 

process a sample once the pipe is filled. Hence, the design does not need to be clocked 

any faster than the requested bandwidth and compared to modern CMOS technology this 

is a low number, in the order of 5-100 MHz There are several advantages with a low 

clock frequency, firs it is possible use a low power/low speed cell library with low static 

leakage current and secondly, it is easier to create a clock tree. Since flexibility is 

achieved with independent modules, where the operation mode decides if a module 

should be used or not. The unused modules are not clocked and hence only consume static 
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leakage power and when you implement 256 point FFT in FPGA than better results are 

out. 
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