Skip to main content
Log in

Correlation between maternal plasma homocysteine and zinc levels in preeclamptic women

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Women with preeclampsia have been shown to have elevated blood levels of the metabolite homocysteine, and alterations in blood levels of zinc and copper have also been reported. This study measured plasma levels of zinc, copper, and homocysteine in women with preeclampsia and in women with healthy, normotensive pregnancies.

For the patients with preeclampsia compared with controls, significantly higher mean plasma levels were found of homocysteine (16.39 vs 9.45 nmol/mL; p≤0.001), zinc (15.53 vs 11.93 μg/g protein; p < 0.05), and copper (47.90 vs 31.60 μg/g protein; p=0.001). The ratio of plasma Cu/Zn levels tended to be higher in preeclamptic women and could be taken as an index of inflammatory reaction, but the difference was not significant. Homocysteine concentrations correlated positively with plasma zinc concentrations in women with preeclampsia (r=0.588, p=0.003) but not in women with healthy pregnancies. No correlations were observed between plasma levels of homocysteine and copper.

Thus, the present study found evidence that preeclampsia might be associated with hyperhomocysteinemia and elevated blood levels of zinc and copper. Furthermore, elevated blood levels of zinc were significantly associated with hyperhomocysteinemia in preeclampsia. More studies are warranted to investigate further any relationship between altered homocysteine metabolism and levels of zinc and copper in preeclampsia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. D. Morris, S. L. Jacobson, R. Anand, et al., Nutrient intake and hypertensive disorders of pregnancy: evidence from a large prospective cohort, Am. J. Obstet. Gynecol. 184, 643–651 (2001).

    Article  PubMed  CAS  Google Scholar 

  2. L. Myatt and M. Miodovnik, Prediction of preeclampsia, Semin. Perinatol. 23, 45–57 (1999).

    Article  PubMed  CAS  Google Scholar 

  3. M. Leeda, N., Riyazi, J. I. de Vries, C. Jakobs, H. P. van Geijn, and G. A. Dekker, Effects of folic acid and vitamin B6 supplementation on women with hyperhomocysteinemia and a history of preeclampsia or fetal growth restriction, Am. J. Obstet. Gynecol. 179, 135–139 (1998).

    Article  PubMed  CAS  Google Scholar 

  4. R. W. Powers, R. W. Evans, A. K. Majors, et al., Plasma homocysteine concentration is increased in preeclampsia and is associated with evidence of endothelial activation, Am. J. Obstet. Gynecol. 179, 1605–1611 (1998).

    Article  PubMed  CAS  Google Scholar 

  5. A. Rajkovic, P. M. Catalano, and M. R. Malinow, Elevated homocyst(e)ine levels with preeclampsia, Obstet. Gynecol. 90, 168–171 (1997).

    Article  PubMed  CAS  Google Scholar 

  6. H. Laivuori, R. Kaaja, U. Turpeinen, L. Viinikka, and O. Ylikorkala, Plasma homocysteine levels elevated and inversely related to insulin sensitivity in preeclampsia. Obstet Gynecol. 93, 489–493 (1999).

    Article  PubMed  CAS  Google Scholar 

  7. T. K. Sorensen, M. R. Malinow, M. A. Williams, I. B. King, and D. A. Luthy, Elevated second-trimester serum homocyst(e)ine levels and subsequent risk of preeclampsia, Gynecol. Obstet. Invest. 48, 98–103 (1999).

    Article  PubMed  CAS  Google Scholar 

  8. J. G. Ray and C. A. Laskin, Follic acid and homocyst(e)ine metabolic defects and the risk of placental abruption, pre-eclampsia and spontaneous pregnancy loss: a systematic review, Placenta 20, 519–529 (1999).

    Article  PubMed  CAS  Google Scholar 

  9. J. M. Roberts, Endothelial dysfunction in preeclampsia, Semin. Reprod. Endocrinol. 16, 5–15 (1998).

    PubMed  CAS  Google Scholar 

  10. R. Hayman, J. Brockelsby, L. Kenny, and P. Baker, Preeclampsia: the endothelium, circulating factor(s) and vascular endothelial growth factor, J. Soc. Gynecol. Invest. 6, 3–10 (1999).

    Article  CAS  Google Scholar 

  11. F. Lyall and I. A. Greer, The vascular endothelium in normal pregnancy and pre-eclampsia, Rev. Reprod. 1, 107–116 (1996).

    Article  PubMed  CAS  Google Scholar 

  12. J. M. Roberts and C. W. Redman, Pre-eclampsia: more than pregnancy-induced hypertension, Lancet 341, 1447–1451 (1993).

    Article  PubMed  CAS  Google Scholar 

  13. J. M. Roberts, R. N. Taylor, and A. Goldfien, Clinical and biochemical evidence of endothelial cell dysfunction in the pregnancy syndrome preeclampsia, Am. J. Hypertens, 4, 700–708 (1991).

    PubMed  CAS  Google Scholar 

  14. R. N. Taylor, C. J. de Groot, Y. K. Cho, and K. H. Lim, Circulating factors as markers and mediators of endothelial cell dysfunction in preeclampsia. Semin. Reprod. Endocrinol. 16, 17–31 (1998).

    PubMed  CAS  Google Scholar 

  15. K. Simmer, C. A. Iles, C. James, and R. P., Thompson, Are iron-folate supplements harmful? Am. J. Clin. Nutr. 45, 122–125 (1987).

    PubMed  CAS  Google Scholar 

  16. N. Lazebnik, B. R. Kuhnert, and P. M. Kuhnert, Zinc, cadmium, and hypertension in parturient women, Am. J. Obstet. Gynecol. 161, 437–440 (1989).

    PubMed  CAS  Google Scholar 

  17. F. F. Cherry, E. A. Bennett, G. S. Bazzano, L. K. Johnson, G. J. Fosmire, and H. K. Batson, Plasma zinc in hypertension/toxemia and other reproductive variables in adolescent pregnancy, Am. J. Clin. Nutr. 34, 2367–2375 (1981).

    PubMed  CAS  Google Scholar 

  18. K. Mahomed, D. K. James, J. Golding, and R. McCabe, Zinc supplementation during pregnancy: a double blind randomised controlled trial, Br. Med. J. 299, 826–830 (1989).

    Article  CAS  Google Scholar 

  19. I. F. Hunt, N. J. Murphy, A. E. Cleaver, et al., Zinc supplementation during pregnancy in low-income teenagers of Mexican descent: effects on selected blood constituents and on progress and outcome of pregnancy. Am. J. Clin. Nutr. 42, 815–828 (1985)

    PubMed  CAS  Google Scholar 

  20. J. R. Prohaska and O. A. Lukasewycz, Effects of copper deficiency on the immune system, Adv. Exp. Med. Biol. 262, 123–143 (1990).

    PubMed  CAS  Google Scholar 

  21. P., Borella, A. Szilagyi, G. Than, I. Csaba, A. Giardino, and F. Facchinetti, Maternal plasma concentrations of magnesium, calcium, zinc and copper in normal and pathological pregnancies, Sci. Total. Environ. 99, 67–76 (1990).

    Article  PubMed  CAS  Google Scholar 

  22. K. Mahomed, M. A. Williams, G. B. Woelk, et al., Leukocyte selenium, zinc, and copper concentrations in preeclamptic and normotensive pregnant women, Biol. Trace Element Res. 75, 107–118 (2000).

    Article  CAS  Google Scholar 

  23. N. Ilhan, N Ilhan, and M. Simsek, The changes of trace elements, malondial dehyde levels and superoxide dismutase activities in pregnancy with or without preeclampsia, Clin. Biochem. 35, 393–397 (2002).

    Article  PubMed  CAS  Google Scholar 

  24. ACOG Committee on Obstetric Practice, ACOG practice bulletin, Diagnosis and management of preeclampsia and eclampsia. Number 33, January 2002, American College of Obstetricians and Gynecologists, Int. J. Gynaecol. Obstet. 77, 67–75 (2002).

    Article  Google Scholar 

  25. L. A. Kluijtmans, L. P. van den Heuvel, G. H. Boers, et al., Molecular genetic analysis in mild hyperhomocysteinemia: a common mutation in the methylenetetrahydrofolate reductase gene is a genetic risk factor for cardiovascular disease, Am. J. Hum. Genet. 58, 35–41 (1996).

    PubMed  CAS  Google Scholar 

  26. G. N. Welch and J. Loscalzo, Homocysteine and atherothrombosis, N. Engl. J. Med. 338, 1042–1050 (1998).

    Article  PubMed  CAS  Google Scholar 

  27. A. Andersson, B. Hultberg, L. Brattstrom, and A. Isaksson, Decreased serum homocysteine in pregnancy, Eur. J. Clin. Chem. Clin. Biochem. 30, 377–379 (1992).

    PubMed  CAS  Google Scholar 

  28. G. A. Dekker, J. I. de Vries, P. M. Doelitzsch, et al., Underlying dis ordersassociated with severe early-onset preeclampsia, Am. J. Obstet. Gynecol. 173, 1042–1048 (1995).

    Article  PubMed  CAS  Google Scholar 

  29. J. C. Chisolm and C. R. Handorf, Zinc, cadmium, metallothionein, and progesterone: do they participate in the etiology of pregnancy induced hypertension? Med. Hypotheses 17, 231–242 (1985).

    Article  PubMed  CAS  Google Scholar 

  30. J. M. Moutquin, P. R., Garner, R. F. Burrows, et al., Report of the Canadian Hypertension Society Consensus Conference: 2. Nonpharmacologic management and prevention of hypertensive disorders in pregnancy, CMAJ 157, 907–919 (1997).

    PubMed  CAS  Google Scholar 

  31. K. H. Hong, C. L. Keen, Y. Mizuno, K. E. Johnston, and T. Tamura, Effects of dietary zinc deficiency on homocysteine and folate metabolism in rats (1). J. Nutr. Biochem. 11, 165–169 (2000).

    Article  PubMed  CAS  Google Scholar 

  32. T. Tamura, L. L. Kaiser, J. E. Watson, C. H. Halsted, L. S. Hurley, and E. L. Stokstad, Increased methionine synthetase activity in zinc-deficient rat liver, Arch. Biochem. Biophys. 256, 311–316 (1987).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harma, M., Harma, M. & Kocyigit, A. Correlation between maternal plasma homocysteine and zinc levels in preeclamptic women. Biol Trace Elem Res 104, 97–105 (2005). https://doi.org/10.1385/BTER:104:2:097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:104:2:097

Index Entries

Navigation