Skip to main content
Log in

Alzheimer’s amyloid β-peptide enhances ATP/gap junction-mediated calcium-wave propagation in astrocytes

  • Original Article
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) involves the progressive extracellular deposition of amyloid β-peptide (Aβ), a self-aggregating 40–42 amino acid protein that can damage neurons resulting in their dysfunction and death. Studies of neurons have shown that Aβ perturbs cellular-calcium homeostasis so that calcium responses to agonists that induce calcium influx or release from internal stores are increased. The recent discovery of intercellular calcium waves in astrocytes suggests intriguing roles for astrocytes in the long-range transfer of information in the nervous system. We now report that Aβ alters calcium-wave signaling in cultured rat cortical astrocytes. Exposure of astrocytes to Aβ1-42 resulted in an increase in the amplitude and velocity of evoked calcium waves, and increased the distance the waves traveled. Suramin decreased wave propagation in untreated astrocytes and abrogated the enhancing effect of Aβ on calcium-wave amplitude and velocity, indicating a requirement for extracellular ATP in wave propagation. Treatment of astrocytes with an uncoupler of gap junctions did not significantly reduce the amplitude, velocity, or distance of calcium waves in control cultures, but completely abolished the effects of Aβ on each of the three wave parameters. These findings reveal a novel action of Aβ on the propagation of intercellular calcium signals in astrocytes, and also suggests a role for altered astrocyte calcium-signaling in the pathogenesis of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez-Maubecin V., Garcia-Hernandez F., Williams J. T., and Van Bockstaele E. J. (2000) Functional coupling between neurons and glia. J. Neurosci. 20, 4091–4098.

    PubMed  CAS  Google Scholar 

  • Arcuino G., Lin J. H., Takano T., Liu C., Jiang L., Gao Q., Kang J., and Nedergaard M. (2002) Intercellular calcium signaling mediated by point-source burst release of ATP. Proc. Natl. Acad. Sci. USA 99, 9840–9845.

    Article  PubMed  CAS  Google Scholar 

  • Blanc E. M., Keller J. N., Fernandez S., and Mattson M. P. (1998) 4-hydroxynonenal, a lipid peroxidation product, inhibits glutamate transport in astrocytes. Glia 22, 149–160.

    Article  PubMed  CAS  Google Scholar 

  • Blanc E. M., Bruce-Keller A. J., and Mattson M. P. (1998) Astrocytic gap junctional communication decreases neuronal vulnerability to oxidative stress-induced disruption of Ca2+ homeostasis and cell death. J. Neurochem. 70, 958–970.

    Article  PubMed  CAS  Google Scholar 

  • Blomstrand F., Aberg N. D., Eriksson P. S., Hansson E., and Ronnback L. (1999) Extent of intercellular calcium wave propagation is related to gap junction permeability and level of connexin-43 expression in astrocytes in primary cultures from four brain regions. Neuroscience 92, 255–265.

    Article  PubMed  CAS  Google Scholar 

  • Boitier E., Rea R., and Duchen M. R. (1999) Mitochondria exert a negative feedback on the propagation of intracellular Ca2+ waves in rat cortical astrocytes. J. Cell. Biol. 145, 795–808.

    Article  PubMed  CAS  Google Scholar 

  • Cadman E. D., Witte D. G., and Lee C. M. (1994) Regulation of the release of interleukin-6 from human astrocytoma cells. J. Neurochem. 63, 980–987.

    Article  PubMed  CAS  Google Scholar 

  • Charles A. C., Merrill J. E., Dirksen E. R., and Sanderson M. J. (1991) Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron 6, 983–992.

    Article  PubMed  CAS  Google Scholar 

  • Chen C. C., Chang J., and Chen W. C. (1996) Potentiation of bradykinin-induced inositol phosphates production by cyclic AMP elevating agents and endothelin-1 in cultured astrocytes. Glia 16, 210–217.

    Article  PubMed  CAS  Google Scholar 

  • Cornell-Bell A. H., Finkbeiner S. M., Cooper M. S., and Smith S. J. (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247, 470–473.

    Article  PubMed  CAS  Google Scholar 

  • Cotrina M. L., Lin J. H., Alves-Rodrigues A., Liu S., Li J., Azmi-Ghadimi H., Kang J., Naus C. C., and Nedergaard M. (1998) Connexins regulate calcium signaling by controlling ATP release. Proc. Natl. Acad. Sci. USA 95, 15,735–15,740.

    Article  CAS  Google Scholar 

  • Enkvist M. O. and McCarthy K. D. (1992) Activation of protein kinase C blocks astroglial gap junction communication and inhibits the spread of calcium waves. J. Neurochem. 59, 519–526.

    Article  PubMed  CAS  Google Scholar 

  • Fields R. D. and Stevens B. (2000) ATP: an extracellular signaling molecule between neurons and glia. Trends Neurosci. 23, 625–633.

    Article  PubMed  CAS  Google Scholar 

  • Guthrie P. B., Knappenberger J., Segal M., Bennett M. V., Charles A. C., and Kater S. B. (1999) ATP released from astrocytes mediates glial calcium waves. J. Neurosci. 19, 520–528.

    PubMed  CAS  Google Scholar 

  • Hardy J. and Selkoe D. J. (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297, 353–356.

    Article  PubMed  CAS  Google Scholar 

  • Hassinger T. D., Atkinson P. B., Strecker G. J., Whalen L. R., Dudek F. E., Kossel A. H., and Kater S. B. (1995) Evidence for glutamate-mediated activation of hippocampal neurons by glial calcium waves. J. Neurobiol. 28, 159–170.

    Article  PubMed  CAS  Google Scholar 

  • Hassinger T. D., Guthrie P. B., Atkinson P. B., Bennett M. V., and Kater S. B. (1996) An extracellular signaling component in propagation of astrocytic calcium waves. Proc. Natl. Acad. Sci. USA 93, 13,268–13,273.

    Article  CAS  Google Scholar 

  • Haughey N. J., Nath A., Chan S. L., Borchard A. C., Rao M. S., and Mattson M. P. (2002) Disruption of neurogenesis by amyloid beta-peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer’s disease. J. Neurochem. 83, 1509–1524.

    Article  PubMed  CAS  Google Scholar 

  • Haughey, N.J., Hatanpaa, Troncoso, J. C., Borchard, A. C., Tammara, A., and Mattson, M. P. (2002b) Purinergic receptor involvement in neuronal cell death associated with Alzheimer’s disease. The 8th International Conference on Alzheimer’s Disease and Related Disorders. (Abstract 1917)

  • Haydon P. G. (2001) GLIA: listening and talking to the synapse. Nat. Rev. Neurosci. 2, 185–193.

    Article  PubMed  CAS  Google Scholar 

  • Hu J., Akama K. T., Krafft G. A., Chromy B. A., and Van Eldik J. (1998) Amyloid-beta peptide activates cultured astrocytes: morphological alterations, cytokine induction and nitric oxide release. Brain Res. 785, 195–206.

    Article  PubMed  CAS  Google Scholar 

  • Jeftinija S. D., Jeftinija K. V., Stefanovic G., and Liu F. (1996) Neuroligand-evoked calcium-dependent release of excitatory amino acids from cultured astrocytes. J. Neurochem. 66, 676–684.

    Article  PubMed  CAS  Google Scholar 

  • Keller J. N., Mark R. J., Bruce A. J., Blanc E. M., Rothstein J. D., Uchida K., Mattson M. P. (1997) 4-hydroxynonenal, an aldehydic product of membrane lipid peroxidation, impairs glutamate transport and mitochondrial function in synaptosomes. Neuroscience 80, 685–696.

    Article  PubMed  CAS  Google Scholar 

  • Lee J., Chan S. L., Mattson M. P. (2002) Adverse effect of a presenilin-1 mutation in microglia results in enhanced nitric oxide and inflammatory cytokine responses to immune challenge in the brain. Neuromolecular Med. 2, 29–45.

    Article  PubMed  CAS  Google Scholar 

  • Mark R. J., Hensley K., Butterfield D. A., and Mattson M. P. (1995) Amyloid β-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death. J. Neurosci. 15, 6239–6249.

    PubMed  CAS  Google Scholar 

  • Mark R. J., Pang Z., Geddes J. W., Uchida K., and Mattson M. P. (1997) Amyloid β-peptide impairs glucose uptake in hippocampal and cortical neurons: involvement of membrane lipid peroxidation. J. Neurosci. 17, 1046–1054.

    PubMed  CAS  Google Scholar 

  • Mattson M. P., Cheng B., Davis D., Bryant K., Lieberburg I., and Rydel R. E. (1992) β-amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J. Neurosci. 12, 376–389.

    PubMed  CAS  Google Scholar 

  • Mattson M. P., Cheng B., Baldwin S., Smith-Swintosky V. L., Keller J., Geddes J. W., Scheff S. W., and Christakos S. (1995) Brain injury and tumor necrosis factors induce expression of calbindin D-28k in astrocytes: a cytoprotective response. J. Neurosci. Res. 42, 357–370.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P. (1997) Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol. Rev. 77, 1081–1132.

    PubMed  CAS  Google Scholar 

  • Matyash M., Matyash V., Nolte C., Sorrentino V., and Kettenmann H. (2002) Requirement of functional ryanodine receptor type 3 for astrocyte migration. FASEB J. 16, 84–86.

    PubMed  CAS  Google Scholar 

  • Meda L., Baron P., and Scarlato G. (2001) Glial activation in Alzheimer’s disease: the role of Abeta and its associated proteins. Neurobiol. Aging 22, 885–893.

    Article  PubMed  CAS  Google Scholar 

  • Meske V., Hamker U., Albert F., and Ohm T. G. (1998) The effects of beta / A4-amyloid and its fragments on calcium homeostasis, glial fibrillary acidic protein and S100beta staining, morphology and survival of cultured hippocampal astrocytes. Neuroscience 85, 1151–1160.

    Article  PubMed  CAS  Google Scholar 

  • Mongin A. A. and Kimelberg H. K. (2002) ATP potently modulates anion channel-mediated excitatory amino acid release from cultured astrocytes. Am. J. Physiol. Cell Physiol. 283, C569-C568.

    PubMed  CAS  Google Scholar 

  • Mrak R. E. and Griffin W. S. (2001) Interleukin-1, neuroinflammation, and Alzheimer’s disease. Neurobiol. Aging 22, 903–908.

    Article  PubMed  CAS  Google Scholar 

  • Nadal A., Fuentes E., Pastor J., and McNaughton P. A. (1997) Plasma albumin induces calcium waves in rat cortical astrocytes. Glia 19, 343–351.

    Article  PubMed  CAS  Google Scholar 

  • Neary J. T. (2000) Trophic actions of extracellular ATP: gene expression profiling by DNA array analysis. J. Auton. Nerv. Syst. 81, 200–204.

    Article  PubMed  CAS  Google Scholar 

  • Nedergaard M., Cooper A. J., and Goldman S. A. (1995) Gap junctions are required for the propagation of spreading depression. J. Neurobiol. 28, 433–444.

    Article  PubMed  CAS  Google Scholar 

  • Newman E. A. (2001) Propagation of intercellular calcium waves in retinal astrocytes and Muller cells. J. Neurosci. 21, 2215–2223.

    PubMed  CAS  Google Scholar 

  • North R. A. and Surprenant A. (2000) Pharmacology of cloned P2X receptors. Annu. Rev. Pharmacol. Toxicol. 40, 563–580.

    Article  PubMed  CAS  Google Scholar 

  • Rossor M. N., Fox N. C., Freeborough P. A., and Harvey R. J. (1996) Clinical features of sporadic and familial Alzheimer’s disease. Neurodegeneration 5, 393–397.

    Article  PubMed  CAS  Google Scholar 

  • Scemes E., Dermietzel R., and Spray D. C. (1998) Calcium waves between astrocytes from Cx43 knockout mice. Glia 24, 65–73.

    Article  PubMed  CAS  Google Scholar 

  • Selinfreund R. H., Barger S. W., Pledger W. J., and Van Eldik L. J. (1991) Neurotrophic protein S100 beta stimulates glial cell proliferation. Proc. Natl. Acad. Sci. USA 88, 3554–3558.

    Article  PubMed  CAS  Google Scholar 

  • Simmons M. L. and Murphy S. (1994) Roles for protein kinases in the induction of nitric oxide synthase in astrocytes. Glia 11, 227–234.

    Article  PubMed  CAS  Google Scholar 

  • Stix B. and Reiser G. (1998) Beta-amyloid peptide 25–35 regulates basal and hormone-stimulated Ca2+ levels in cultured rat astrocytes. Neurosci. Lett. 243, 121–124.

    Article  PubMed  CAS  Google Scholar 

  • Tan J., Town T., and Mullan M. (2002) CD40-CD40L interaction in Alzheimer’s disease. Curr. Opin. Pharmacol. 2, 445–451.

    Article  PubMed  CAS  Google Scholar 

  • Venance L., Piomelli D., Glowinski J., and Giaume C. (1995) Inhibition by anandamide of gap junctions and intercellular calcium signalling in striatal astrocytes. Nature 376, 590–594.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark P. Mattson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haughey, N.J., Mattson, M.P. Alzheimer’s amyloid β-peptide enhances ATP/gap junction-mediated calcium-wave propagation in astrocytes. Neuromol Med 3, 173–180 (2003). https://doi.org/10.1385/NMM:3:3:173

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/NMM:3:3:173

Index Entries

Navigation