Skip to main content
Log in

Neuronal overexpression of COX-2 results in dominant production of PGE2 and altered fever response

  • Original Research
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Cyclooxygenases catalyze the first committed step in the formation of prostaglandins and thromboxanes from arachidonic acid. Cyclooxygenase-2 (COX-2), the inducible isoform of cyclooxygenase, is expressed in brain selectively in neurons of hippocampus, cerebral cortex, amygdala, and hypothalamus. Prostaglandins function in many processes in the CNS, including fever induction, nociception, and learning and memory, and are upregulated in paradigms of excitotoxic brain injury such as stroke and epilepsy. To address the varied functions of COX-2 and its prostaglandin products in brain, we have developed a transgenic mouse model in which COX-2 is selectively overexpressed in neurons of the CNS. COX-2 transgenic mice demonstrate elevated levels of all prostaglandins and thromboxane, albeit with a predominant induction of PGE2 over other prostaglandins, followed by more modest inductions of PGI2, and relatively smaller increases in PGF, PGD2, and TxB2. We also examined whether increased neuronal production of prostaglandins would affect fever induction in response to the bacterial endotoxin lipopolysaccharide. COX-2 induction in brain endothelium has been previously determined to play an important role in fever induction, and we tested whether neuronal expression of COX-2 in hypothalamus also contributed to the febrile response. We found that in mice expressing transgenic COX-2 in anterior hypothalamus, the febrile response was significantly potentiated in transgenic as compared to non-transgenic mice, with an accelerated onset of fever by 1–2 hours after LPS administration, suggesting a role for neuronally derived COX-2 in the fever response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams J., Collaco-Moraes Y., and de Belleroche J. (1996) Cyclooxygenase-2 induction in cerebral cortex: an intracellular response to synaptic excitation. J. Neurochem. 66, 6–13.

    Article  PubMed  CAS  Google Scholar 

  • Andreasson K. I., Savonenko A., Vidensky S., et al. (2001) Age-dependent cognitive deficits and neuronal apoptosis in cyclooxygenase-2 transgenic mice. J. Neurosci. 21, 8198–8209.

    PubMed  CAS  Google Scholar 

  • Breder C. D., Dewitt D., and Krang R. P. (1995) Characterization of inducible cyclooxygenase in rat brain. J. Comp. Neurol. 355, 296–315.

    Article  PubMed  CAS  Google Scholar 

  • Breder C. D. and Saper C. B. (1996) Expression of inducible cyclooxygenase mRNA in the mouse brain after systemic administration of bacterial lipopolysaccharide. Brain Res. 713, 64–69.

    Article  PubMed  CAS  Google Scholar 

  • Breyer R. M., Bagdassarian C. K., Myers S. A., and Breyer M. D. (2001) Prostanoid receptors: subtypes and signaling. Annu. Rev. Pharmacol. Toxicol. 41, 661–690.

    Article  PubMed  CAS  Google Scholar 

  • Brock T. G., McNish R. W., and Peters-Golden M. (1999) Arachidonic acid is preferentially metabolized by cyclooxygenase-2 to prostacyclin and prostaglandin E2. J. Biol. Chem. 274, 11,660–11,666.

    Article  CAS  Google Scholar 

  • Bustos M., Coffman T. M., Saadi S., and Platt J. L. (1997) Modulation of eicosanoid metabolism in endothelial cells in a xenograft model. Role of cyclooxygenase-2. J. Clin. Invest. 100, 1150–1158.

    Article  PubMed  CAS  Google Scholar 

  • Cao C., Matsumura K., Ozaki M., and Watanabe Y. (1999) Lipopolysaccharide injected into the cerebral ventricle evokes fever through induction of cyclooxygenase-2 in brain endothelial cells. J. Neurosci. 19, 716–725.

    PubMed  CAS  Google Scholar 

  • Cao C., Matsumura K., Yamagata K., and Watanabe Y. (1995) Induction by lipopolysaccharide of cyclooxygenase-2 mRNA in rat brain; its possible role in the febrile response. Brain Res. 697, 187–196.

    Article  PubMed  CAS  Google Scholar 

  • Cao C., Matsumura K., Yamagata K., and Watanabe Y. (1997) Involvement of cyclooxygenase-2 in LPS-induced fever and regulation of its mRNA by LPS in the rat brain. Am. J. Physiol. 272, R1712-R1725.

    PubMed  CAS  Google Scholar 

  • Caroni P. (1997) Overexpression of growth associated proteins in the neurons of adult transgenic mice. J. Neurosci. Methods 71, 3–9.

    Article  PubMed  CAS  Google Scholar 

  • Chai Z., Gatti S., Toniatti C., et al. (1996) Interleukin (IL)-6 gene expression in the central nervous system is necessary for fever response to lipopolysaccharide or IL-1 beta: a study on IL-6-deficient mice. J. Exp. Med. 183, 311–316.

    Article  PubMed  CAS  Google Scholar 

  • Ek M., Arias C., Sawchenko P., and Ericsson-Dahlstrand A. (2000) Distribution of the EP3 prostaglandin E(2) receptor subtype in the rat brain: relationship to sites of interleukin-1-induced cellular responsiveness. J. Comp. Neurol. 428, 5–20.

    Article  PubMed  CAS  Google Scholar 

  • Hewitt S. J., Uliasz T., Vidwans A., and Hewett J. A. (2000) Cyclooxygenase-2 contributes to N-methyl-D-aspartate mediated neuronal cell death in primary cortical cultures. J. Pharm. Expt. Ther. 293, 417–425.

    Google Scholar 

  • Hla T., Bishop-Bailey D., Liu C. H., et al. (1999) Cyclooxygenase-1 and -2 isoenzymes. Int. J. Biochem. Cell Biol. 31, 551–557.

    Article  PubMed  CAS  Google Scholar 

  • Horai R., Asano M., Sudo K., et al. (1998) Production of mice deficient in genes for interleukin (IL)-1alpha, IL-1beta, IL-1alpha/beta, and IL-1 receptor antagonist shows that IL-1beta is crucial in turpentine-induced fever development and glucocorticoid secretion. J. Exp. Med. 187, 1463–1475.

    Article  PubMed  CAS  Google Scholar 

  • Huang M., Stolina M., Sharma S., et al. (1998) Non-small cell lung cancer cyclooxygenase-2-dependent regulation of cytokine balance in lymphocytes and macrophages: up-regulation of interleukin 10 and down-regulation of interleukin 12 production. Cancer Res. 58, 1208–1216.

    PubMed  CAS  Google Scholar 

  • Ingraham H. A., Lawless G. M., and Evans G. A. (1986) The mouse Thy1.2 glycoprotein gene: Complete sequence and identification of an unusual promoter. J. Immunol. 136, 1482–1489.

    PubMed  CAS  Google Scholar 

  • Jakobsson P. J., Thoren S., Morgenstern R., and Samuelsson B. (1999) Identification of human prostaglandin E synthase: a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. Proc. Natl. Acad. Sci. USA 96, 7220–7225.

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann W. E., Andreasson K. I., Isakson P. C., and Worley P. F. (1997) Cyclooxygenases and the central nervous system. Prostaglandins 54, 601–624.

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann W. E., Worley P. F., Pegg J., et al. (1996) Cox-2, a synaptically induced enzyme, is expressed by excitatory neurons at postsynaptic sites in rat cerebral cortex. Proc. Natl. Acad. Sci. USA 93, 2317–2321.

    Article  PubMed  CAS  Google Scholar 

  • Lacroix S. and Rivest S. (1998) Effect of acute systemic inflammatory response and cytokines on the transcription of the genes encoding cyclooxygenase enzymes (COX-1 and COX-2) in the rat brain. J. Neurochem. 70, 452–466.

    Article  PubMed  CAS  Google Scholar 

  • Matsumura K., Cao C., Ozaki M., et al. (1998) Brain endothelial cells express cyclooxygenase-2 during lipopolysaccharide-induced fever: light and electron microscopic immunocytochemical studies. J. Neurosci. 18, 6279–6289.

    PubMed  CAS  Google Scholar 

  • Miettinen S., Fusco F. R., Yrjanheikki J., et al. (1997) Spreading depression and focal brain ischemia induce cyclooxygenase-2 in cortical neurons through N-methyl-D-aspartic acid-receptors and phospholipase A2. Proc. Natl. Acad. Sci. USA 94, 6500–6505.

    Article  PubMed  CAS  Google Scholar 

  • Minami T., Nakano H., Kobayashi T., et al. (2001) Characterization of EP receptor subtypes responsible for prostaglandin E2-induced pain responses by use of EP1 and EP3 receptor knockout mice. Br. J. Pharmacol. 133, 438–444.

    Article  PubMed  CAS  Google Scholar 

  • Mizoguchi A., Eguchi N., Kimura K., et al. (2001) Dominant localization of prostaglandin D receptors on arachnoid trabecular cells in mouse basal forebrain and their involvement in the regulation of non-rapid eye movement sleep. Proc. Natl. Acad. Sci. USA 98, 11,674–11,679.

    Article  CAS  Google Scholar 

  • Modeer T., Bengtsson A., and Rolla G. (1996) Triclosan reduces prostaglandin biosynthesis in human gingival fibroblasts challenged with interleukin-1 in vitro. J. Clin. Periodontol. 23, 927–933.

    Article  PubMed  CAS  Google Scholar 

  • Nakayama M., Uchimura K., Zhu R. L., et al. (1998) Cyclooxygenase-2 inhibitions prevents delayed death of CA1 hippocampal neurons following global ischemia. Proc. Natl. Acad. Sci. USA 95, 10,954–10,959.

    CAS  Google Scholar 

  • Nogawa S., Zhang F., Ross E., and Iadecola C. (1997) Cyclo-oxygenase-2 gene expression in neurons contributes to ischemic brain damage. J. Neurosci. 17, 2746–2755.

    PubMed  CAS  Google Scholar 

  • Sagar S. M. (1994) The functional neuroanatomy of the acute-phase response. Ann. NY Acad. Sci. 739, 282–291.

    Article  PubMed  CAS  Google Scholar 

  • Satoh T., Ishikawa Y., Kataoka Y., et al. (1999) CNS-specific prostacyclin ligands as neuronal survival-promoting factors in the brain. Eur. J. Neurosci. 11, 3115–3124.

    Article  PubMed  CAS  Google Scholar 

  • Scammell T. E., Elmquist J. K., Griffin J. D., and Saper C. B. (1996) Ventromedial preoptic prostaglandin E2 activates fever-producing autonomic pathways. J. Neurosci. 16, 6246–6254.

    PubMed  CAS  Google Scholar 

  • Scammell T. E., Griffin J. D., Elmquist J. K., and Saper C. B. (1998) Microinjection of a cyclooxygenase inhibitor into the anteroventral preoptic region attenuates LPS fever. Am. J. Physiol. 274, R783-R789.

    PubMed  CAS  Google Scholar 

  • Seregi A., Forstermann U., Heldt R., and Hertting G. (1985) The formation and regional distribution of prostaglandins D2 and F2 alpha in the brain of spontaneously convulsing gerbils. Brain Res. 337, 171–174.

    Article  PubMed  CAS  Google Scholar 

  • Smith W. L., DeWitt D. L., and Garavito R. M. (2000) Cyclooxygenases: structural, cellular, and molecular biology. Annu. Rev. Biochem. 69, 145–182.

    Article  PubMed  CAS  Google Scholar 

  • Tsien J. Z., Chen D. F., Gerber D., et al. (1996) Subregion and cell type restricted gene knockout in mouse brain. Cell 87, 1317–1326.

    Article  PubMed  CAS  Google Scholar 

  • Ushikubi F., Segi E., Sugimoto Y., et al. (1998) Impaired febrile response in mice lacking the prostaglandin E receptor subtype EP3. Nature 395, 281–284.

    Article  PubMed  CAS  Google Scholar 

  • Vane J. R. (1971) Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nature New. Biol. 231, 232–235.

    PubMed  CAS  Google Scholar 

  • Vidal M., Morris R., Grosveld F., and Spanopoulou E. (1990) Tissue-specific control elements of the Thy-1 gene. EMBO J. 9, 833–840.

    PubMed  CAS  Google Scholar 

  • Yamagata K., Andreasson K., Kaufmann W. E., et al. (1993) Expression of a mitogen-inducible cyclooxygenase in brain neurons: regulation by synaptic activity and glucocorticoids. Neuron 11, 371–386.

    Article  PubMed  CAS  Google Scholar 

  • Yamagata K., Matsumura K., Inoue W., et al. (2001) Coexpression of microsomal-type prostaglandin E synthase with cyclooxygenase-2 in brain endothelial cells of rats during endotoxin-induced fever. J. Neurosci. 21, 2669–2677.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Andreasson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vidensky, S., Zhang, Y., Hand, T. et al. Neuronal overexpression of COX-2 results in dominant production of PGE2 and altered fever response. Neuromol Med 3, 15–27 (2003). https://doi.org/10.1385/NMM:3:1:15

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/NMM:3:1:15

Index Entries

Navigation