Skip to main content
Log in

“Dynamic” connectivity in neural systems

Theoretical and empirical considerations

  • Review Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

The study of functional interdependences between brain regions is a rapidly growing focus of neuroscience research. This endeavor has been greatly facilitated by the appearance of a number of innovative methodologies for the examination of neurophysiological and neuroimaging data. The aim of this article is to present an overview of dynamical measures of interdependence and contrast these with statistical measures that have been more widely employed. We first review the motivation, conceptual basis, and experimental approach of dynamical measures of interdependence and their application to the study of neural systems. A consideration of boot-strap “surrogate data” techniques, which facilitate hypothesis testing of dynamical measures, is then used to clarify the difference between dynamical and statistical measures of interdependence. An overview of some of the most active research areas—such as the study of the “synchronization manifold,” dynamical interdependence in neurophysiology data and the putative role of nonlinear desynchronization—is then given. We conclude by suggesting that techniques based on dynamical interdependence—or “dynamical connectivity”—show significant potential for extracting meaningful information from functional neuroimaging data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham, R. H. and Shaw, C. D. (1992) Dynamics—The Geometry of Behavior, Addison-Wesley, Redwood City, CA.

    Google Scholar 

  • Abarbanel, H., Rulkov, N., and Sushchik, M. (1995) Blending chaotic attractors using the synchronisation of chaos. Phys. Rev. E 52, 214–217.

    Article  CAS  Google Scholar 

  • Accardo, A., Affinito, M., Carrozzi, M., and Bouquet, F. (1997) Use of the fractal dimension for the analysis of EEG time series. Biol. Cybern. 77, 339–350.

    Article  CAS  Google Scholar 

  • Afraimovich, V., Verichev, N., and Rabinovich, M. (1986) Stochastic synchronisation of oscillation in dissipative systems. Radiophys. Quantum Electron. 29, 795–780.

    Article  Google Scholar 

  • Alexander, J., Yorke, J., You, Z., and Kan, I. (1992) Riddled basins. Int. J. Bifurcations Chaos 2, 795–813.

    Article  Google Scholar 

  • Arnhold, J., Grassberger, P., Lehnertz, K., and Elger, C. (1999) A robust method for detecting interdependencies: Application to intracranially recorded EEG. Physica 134D, 419–430.

    Google Scholar 

  • Ashwin, P., Buescu, J., and Stewart, I. (1994) Bubbling of attractors and synchronization of chaotic attractors. Phys. Lett. A. 193, 126–139.

    Article  Google Scholar 

  • Ashwin, P., Buescu, J., and Stewart, I. (1996) From attractor to chaotic saddle, A tale of transverse stability. Nonlinearity 9, 703–737.

    Article  Google Scholar 

  • Ashwin, P. and Breakspear, M. (2001) Anisotropic properties of riddling. Phys. Lett. A. 280, 139–145.

    Article  CAS  Google Scholar 

  • Ashwin, P. and Terry, J. (2000) On riddling and weak attractors. Physica 142D, 87–100.

    Google Scholar 

  • Babloyantz, A., Salazar, J., and Nicolis, C. (1985) Evidence of chaotic dynamics of brain activity during the sleep cycle. Phys. Lett. A 111, 152–156.

    Article  Google Scholar 

  • Barreto, E., Josic, K., Morales, C. J., Sander, E., and So, P. (2003) The geometry of chaos synchronization. Chaos 13, 151–164.

    Article  Google Scholar 

  • Boccaletti, S., Valladeres, D., Kurths, J., Maza, D., and Mancini, H. (2000) Synchronisation of structurally nonequivalent systems. Phys. Rev. E 61, 3712–3715.

    Article  CAS  Google Scholar 

  • Boccaletti, S., Kurths, J., Osipov, G., Valladares, D.L., and Zhou, C.S. (2002) The synchronization of chaotic systems. Physics Reports 366, 1–101.

    Article  CAS  Google Scholar 

  • Breakspear, M. (2001) Perception of odours by a nonlinear model of the olfactory bulb. Int. J. Neural Sys. 11, 101–124.

    CAS  Google Scholar 

  • Breakspear, M. (2002) Nonlinear phase desynchronization in human electroencephalographic data. Human Brain Mapping 15, 175–198

    Article  Google Scholar 

  • Breakspear, M. and Terry, J. (2002a) Nonlinear interdependence in neural systems, Motivation, theory and relevance. Int. J. Neurosci. 112, 1163–1184.

    Article  Google Scholar 

  • Breakspear M. and Terry, J. (2002b) Topographic organisation of nonlinear interdependence in multichannel human EEG. Neuroimage 16, 822–825.

    Article  CAS  Google Scholar 

  • Breakspear, M. and Terry, J. (2002c) Detection and description of nonlinear interdependence in normal multichannel human EEG. Clin. Neurophysiol. 113, 735–753.

    Article  CAS  Google Scholar 

  • Breakspear, M., Terry, J., Friston, K. J. (2003a) Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a nonlinear model of neuronal dynamics. Network, Comp. Neural Sys. 14, 703–732.

    Article  Google Scholar 

  • Breakspear, M., Brammer, M., and Robinson, P. A. (2003b) Construction of multivariate surrogates for nonlinear data using the wavelet transform. Physica 182D, 1–22.

    Google Scholar 

  • Breakspear, M., Terry, J., Friston, K. J., Williams, L., Brown, K., Brennan, J., and Gordon, E. (2003c) A disturbance of nonlinear interdependence in scalp EEG of subjects with first episode schizophrenia. NeuroImage 20, 466–478.

    Article  CAS  Google Scholar 

  • Breakspear, M., Williams, L., and Stam, K. (2003d) Topographic analysis of phase dynamics in neural systems reveals formation and dissolution of ‘dynamic cell assemblies’. J. Comp. Neurosci. 16, 49–68.

    Article  Google Scholar 

  • Breakspear, M., Brammer, M., Dass, P., Bullmore, E. T., and Williams, L. (2003e) Spatio-temporal wavelet resampling for functional neuroimaging data. Human Brain Mapping 23, 1–25.

    Article  Google Scholar 

  • Bullmore, E. T., Rabe-Hesketh, S., Morris, R. G., Williams, S. C. R., Gregory, L., Gray, J. A., and Brammer, M. J. (1996) Functional magnetic resonance image analysis of a large-scale neurocogntive network. NeuroImage, 4, 16–33.

    Article  CAS  Google Scholar 

  • Bullmore, E. T., Long, C., Suckling, J., et al. (2001) Colored noise and computational inference in neurophysiological time series analysis. Human Brain Mapping, 12, 61–78.

    Article  CAS  Google Scholar 

  • Destexhe, A. Sepulchre, J., Babloyantz, A. (1988) A comparative study of the experimental quantification of deterministic chaos. Phys. Lett. A, 132, 101–106.

    Article  Google Scholar 

  • Destexhe, A. and Sejnowski, T.J. (2001) Thalamo-cortical assemblies, Oxford University Press, Oxford.

    Google Scholar 

  • Eckmann, J. and Ruelle, D. (1985) Ergodic theory of chaos and strange attractors. Reviews of Modern Physics, 57, 617–656.

    Article  CAS  Google Scholar 

  • Fell, J., Roschke, J., and Beckmann, P. (1993) Deterministic chaos and the first positive Lyaponuv exponent. Biol. Cybern., 69, 139–146.

    Article  CAS  Google Scholar 

  • Frank, T., Daffertshofer, A., Peper, C., Beek, P., and Haken, H. (2000) Toward a comprehensive theory of brain activity, coupled oscillators under external forces. Physica D, 144, 62–86.

    Article  Google Scholar 

  • Freeman, W. J. (1975) Mass Action in the Nervous System. Academic Press, New York.

    Google Scholar 

  • Freeman, W. J. and Rogers, L. J. (2002) Fine temporal resolution of analytic phase reveals episodic synchronization by state transitions in EEGs. J. Neurophysiol., 87, 937–945.

    Google Scholar 

  • Freeman, W. J., Burke, B. C., and Holmes, M. D. (2003) Aperiodic phase re-setting in scalp EEG of beta-gamma oscillations by state transitions at alphatheta rates. Human Brain Mapping, 19, 248–272.

    Article  Google Scholar 

  • Friston, K. J., Frith, C. D., Liddle, P. F., and Frackowiak, R. S. J. (1993) Functional connectivity, The principle component analysis of large (PET) data sets. J. Cereb. Blood Flow Metab. 13, 5–14.

    CAS  Google Scholar 

  • Friston, K. J., Tononi, G., Sporns, O., and Edleman, G. (1995) Characterising the complexity of neuronal interactions. Human Brain Mapping, 3, 302–314.

    Article  Google Scholar 

  • Friston, K. J. and Frith, C. D. (1995) Schizophrenia, a disconnection syndrome? Clin. Neurosci., 3, 88–97.

    Google Scholar 

  • Friston, K. J. (1997) Another neural code? NeuroImage, 5, 213–220.

    Article  CAS  Google Scholar 

  • Friston, K. J., Frith, C. D., Fletcher, P., Liddle, P. F., and Frackowiak, R. S. J. (1996) Functional topography, multidimensional scaling and functional connectivity in the brain. Cereb. Cortex 6, 156–164.

    Article  CAS  Google Scholar 

  • Friston, K. J. (2000a) The labile brain. I. Neuronal transients and nonlinear coupling. Phil. Trans. Roy. Soc. Lon., 355B, 215–236.

    Article  Google Scholar 

  • Friston, K. J. (2000b) The labile brain. II. Transients, complexity and selection. Phil. Trans. Roy. Soc. Lon., 355B, 237–252.

    Article  Google Scholar 

  • Friston, K. J., Harrison, L., and Penny, W. D. (2003) Dynamic causal modeling. NeuroImage 19, 1273–1302.

    Article  CAS  Google Scholar 

  • Fujisaka, H. and Yamada, T. (1983) Stability theory of synchronized motion in coupled-oscillator system. Progress in Theoretical Physics, 69, 32–47.

    Article  CAS  Google Scholar 

  • Gallez, D. and Babloyantz, A. (1991) Predictability of human EEG, a dynamical approach. Biol. Cybern., 64, 381–391.

    Article  CAS  Google Scholar 

  • Gatlin, L. (1972) Information Theory and the Living System. Columbia University Press, New York.

    Google Scholar 

  • Gregson R., Britton L., Campbell E., and Gates G. (1990) Comparisons of the nonlinear dynamics of EEGs under various task loading conditions, A preliminary report. Biol. Psychol., 31, 173–191.

    Article  CAS  Google Scholar 

  • Haig, A. and Gordon, E. (1998) Prestimulus EEG alpha phase synchronicity influences N100 amplitude and reaction time,. Pschophysiol., 35, 591–595.

    Article  CAS  Google Scholar 

  • Harrison, L., Penny, W. D., and Friston, K. J. (2003) Multivariate autoregressive modeling of fMRI time series. NeuroImage, 19, 1477–1491.

    Article  CAS  Google Scholar 

  • Heagy, J., Carroll, T., and Pecora, L. (1998) Desynchronization by periodic orbits. Phys. Rev. E, 52, R1253-R1256.

    Article  Google Scholar 

  • Horwitz, B. (2003) The elusive concept of brain connectivity. NeuroImage, 19, 466–470.

    Article  Google Scholar 

  • Hunt, B., Ott, E., and Yorke, J. (1997) Differentiable synchronisation of chaos. Phys. Rev. E, 55, 4029–4034.

    Article  CAS  Google Scholar 

  • Jerger, K. K., Netoff, T. I., Francis, J. T., Sauer, T., Pecora, L. Weinstein, S. L., and Schiff, S. J. (2001) Early seizure detection. J. Clin. Neurophysiol., 18, 259–268.

    Article  CAS  Google Scholar 

  • Jirsa, V. K. and Haken, H. (1996) Field theory of electromagnetic brain activity. Phys. Rev. Lett., 77, 960–963.

    Article  CAS  Google Scholar 

  • Josic, K. (1998) Invariant manifolds and synchronisation of coupled dynamical systems. Phys. Rev. Lett., 80, 3053–3056.

    Article  CAS  Google Scholar 

  • Kandel, E. R., Schwartz, J. H., and Jessell, T. M. (2000) Principles of Neural Science, McGraw-Hill, New York.

    Google Scholar 

  • Kaneko, K. (1997) Dominance of Milnor attractors and noise-induced selection in a multiattractor system. Phys. Rev. Lett., 78, 2736–2739.

    Article  CAS  Google Scholar 

  • Kaneko, K. (1998) On the strength of attractors in a high-dimensional system. Physica 124D, 322–344.

    Google Scholar 

  • Kennel, M., Brown, R., and Abarbanel, H. (1992) Determining embedding dimension for phase space reconstruction using geometrical reconstruction. Phys. Rev. A, 45, 3403–3411.

    Article  Google Scholar 

  • Kocarev, L., and Parlitz, U. (1996) Generalised synchronisation, predictability and equivalence of unidirectionally coupled dynamical systems. Phys. Rev. Lett., 76, 1816–1819.

    Article  CAS  Google Scholar 

  • Kocarev, L., Parlitz, U., and Brown, R. (2000) Robust synchronisation of chaotic systems. Phys. Rev. E, 61, 3716–3720.

    Article  CAS  Google Scholar 

  • Korn, H. and Faure, P. (2003) Is there chaos in the brain? II. Experimental evidence and related models, C.R. Biologies. 326, 787–840.

    Article  Google Scholar 

  • Larter, R., Speelman, B., and Worth, R (1999) A coupled ordinary differential equation lattice model for the simulation of epileptic seizures. Chaos, 9, 795–804.

    Article  Google Scholar 

  • Le Van Quyen, M., Martinerie, J., Adam, C., and Varela, F. (1999) Nonlinear analysis of interictal EEG map the interdependencies in human epilepsy. Physica, 127D, 250–266.

    Google Scholar 

  • Lorenz, E. (1963) Deterministic nonperiodic flow. J. Atmospheric Science, 20, 130–141.

    Article  Google Scholar 

  • Lutzenberger, W., Birbaumer, N., Flor, H., Rockstroh, B., and Elbert, T. (1992) Dimensional analysis of the human EEG and intelligence. Neurosci. Lett., 143,10–14.

    Article  CAS  Google Scholar 

  • Mayer-Kress, G. and Layne, S. (1987) Dimensionality of the human EEG. Annals New York Acad. Sci., 504, 62–87.

    Article  CAS  Google Scholar 

  • Maistrenko, Y., Maistrenko, V., Popovich, A., and Mosekilde, E. (1998) Transverse instability and riddled basins in a system of two coupled logistic maps. Phys. Rev. E, 57, 2713–2724.

    Article  CAS  Google Scholar 

  • McIntosh, A. R. and Gonzeles-Lima, F. (1994) Structural equation modelling and its application to network analysis in brain imaging. Human Brain Mapping, 2, 2–22.

    Article  Google Scholar 

  • McIntosh, A. R., Bookstein, F. L., Haxby, J. V., and Grady, C. L. (1996) Spatial pattern analysis of functional brain images using partial least squares. NeuroImage, 3, 143–157.

    Article  CAS  Google Scholar 

  • McIntosh, A. R., Rajah, M. N., and Lobaugh, N. J. (2003) functional connectivity of the medial temporal lobe relates to learning and awareness. J. Neurosci., 23, 6520–6528.

    CAS  Google Scholar 

  • Milnor, J. (1985) On the concept of attractor, Communications in Mathematical Physics. 99, 177–195.

    Article  Google Scholar 

  • Morris, C. and Lecar, H. (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys. J., 35, 193–213.

    CAS  Google Scholar 

  • Mountcastle, V. B. (1998) The Cerebral Cortex, Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Netoff, T. I. and Schiff, S. J. (2002) Decreased neuronal synchronization during experimental seizures. J. Neurosci., 22, 7297–7307.

    CAS  Google Scholar 

  • Nunez, P. L. (1995) Neocortical Dynamics and Human Brain Rhythms, Oxford University Press, Oxford.

    Google Scholar 

  • Ott, E. and Sommerer, J. (1994) Blowout bifurcations: the occurrence of riddled basins and on-off intermittence. Phys. Lett. A, 188, 39–47.

    Article  Google Scholar 

  • Packard, N., Crutchfield, J., Farmer, D., and Shaw, R. (1980) Geometry from a timeseries. Phys. Rev. Lett., 45, 712–715.

    Article  Google Scholar 

  • Palus, M. (1996) Nonlinearity in normal human EEG: cycles, temporal asymmetry, nonstationarity and randomness, not chaos. Biol. Cybern., 75, 389–396.

    Article  CAS  Google Scholar 

  • Parlitz, U., Junge, L., Lauterborn, W., and Kocarev, L. (1996) Experimental observation of phase synchronization. Phys. Rev. E, 54, 2115–2117.

    Article  CAS  Google Scholar 

  • Pecora, L. and Carroll, T. (1990) Synchronization in chaotic systems, Phys. Rev. Lett., 64, 821–824.

    Article  Google Scholar 

  • Pecora, L. (1998) Synchronization conditions and desynchronizing patterns in coupled limitcycle and chaotic systems. Phys. Rev. E, 58, 347–360.

    Article  CAS  Google Scholar 

  • Peled, A. (1999) Multiple constraint organization in the brain, A theory for schizophrenia. Brain Res. Bull. 49, 245–250.

    Article  CAS  Google Scholar 

  • Pijn, J., Neerven, J., Noest, A., Lopes da Silva, F. (1991) Chaos or noise in EEG signals; dependence on state and brain site. Electroenceph. Clin. Neurophysiol., 79, 371–381.

    Article  CAS  Google Scholar 

  • Pikovsky, A. and Grassberger, P. (1991) Symmetry breaking bifurcation for coupled chaotic attractors. J. Phys. A, 24, 4587–4597.

    Article  Google Scholar 

  • Prichard, D. and Theiler, J. (1994) Generating surrogate data for time series with several simultaneously measured variables. Phys. Rev. Lett., 73, 951–954.

    Article  Google Scholar 

  • Pritchard, W. and Duke, D. (1992) Dimensional analysis of no-task human EEG using the Grassberger-Procaccia method. Psychophysiol., 29, 182–192.

    Article  CAS  Google Scholar 

  • Pritchard, W., Duke, D., and Krieble, K. (1995) Dimensional analysis of resting human EEG II: Surrogate data testing indicates nonlinearity but not low-dimensional chaos. Psychophysiol., 32, 486–491.

    Article  CAS  Google Scholar 

  • Pyragas, K. (1998) Synchronization of coupled time-delay systems, Analytic results. Phys. Rev. E, 58, 3067–3070.

    Article  CAS  Google Scholar 

  • Robinson, P. A., Rennie, C. J., and Wright, J. J. (1997) Propagation and stability of waves of electrical activity in the cerebral cortex. Phys. Rev. E, 56, 826–840.

    Article  CAS  Google Scholar 

  • Robinson, P.A., Rennie, C.J., Wright, J.J., Bahramali, H., Gordon, E., and Rowe, D.L. (2001) Prediction of EEG spectra from neurophysiology. Phys. Rev. E, 63, 021903.

    Google Scholar 

  • Rombouts, S., Keunen, R., and Stam, C. (1995) Investigation of nonlinear structure in multichannel EEG. Physics Letters A, 202, 352–358.

    Article  CAS  Google Scholar 

  • Roschke, J. and Aldenhoff, J. (1991) The dimensionality of human’s electroencephalogram during sleep. Biol. Cybern., 64, 307–313.

    Article  CAS  Google Scholar 

  • Rosenblum, M., Pikovsky, A., and Kurths, J. (1996) Phase synchronization of chaotic oscillators. Phys. Rev. Lett., 76, 1804–1807.

    Article  CAS  Google Scholar 

  • van Rotterdam, A., Lopes da Silva, F. H., van den Ende, J., Viergever, M. A., and Hermans, A. J. (1982) A model of the spatio-temporal characteristics of the alpha rhythm. Bull. Math. Biol., 44, 283–305.

    Article  Google Scholar 

  • Ruelle, D. (1990) Deterministic chaos, The science and the fiction. Proc. Roy. Soc. Lon. 427A, 241–248.

    Article  Google Scholar 

  • Rulkov, N., Sushchik, M., Tsimring, L., and Abarbenel, H. (1995) Generalized synchronization of chaos in unidirectionally coupled chaotic systems. Phys. Rev. E, 51, 980–994.

    Article  Google Scholar 

  • Rulkov, N. and Sushchik, M. (1997) Robustness of synchronized chaotic oscillations. Int. J. Bif. Chaos, 7, 625–643.

    Article  Google Scholar 

  • Schack, B., Witte, H., Helbig, M., Schelenz, C., and Specht, M. (2001) Time-variant non-linear phase-coupling analysis of EEG burst patterns in sedated patients during electroencephalic burst suppression period. Clin. Neurophysiol. 112, 1388–1399.

    Article  CAS  Google Scholar 

  • Schanze, T. and Eckhorn, R. (1997) Phase correlation among rhythms present at different frequencies. Int. J. Psychophysiol., 26, 171–189.

    Article  CAS  Google Scholar 

  • Schiff, S., So, P., Chang, T., Burke, R., and Sauer, T. (1996) Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble. Phys. Rev. E, 54, 6708–6724.

    Article  CAS  Google Scholar 

  • Schreiber, T. (1998) Constrained randomization of time series data. Phys. Rev. Lett., 80, 2105–2108.

    Article  CAS  Google Scholar 

  • Schreiber, T. and Schmitz, A. (1996) Improved surrogate data for nonlinearity tests. Phys. Rev. Lett., 77, 635–638.

    Article  CAS  Google Scholar 

  • Schreiber, T. and Schmitz, A. (2000) Surrogate time series. Physica, 142D, 346–382.

    Google Scholar 

  • Shahverdiev, E. M., Sivaprakasam, S., and Shore, K. A. (2002) Lag synchronization in time-delayed systems. Phys. Lett. A, 292, 320–324.

    Article  CAS  Google Scholar 

  • Silberstein, R.B. (1995) Neuromodulations of neocortical dynamics, In, Neocortical Dynamics and Human EEG Rhythms, (ed. P.L. Nunez) Oxford University Press, Oxford.

    Google Scholar 

  • Soong, A. and Stuart, C. (1989) Evidence of chaotic dynamics underlying the human alpha-rhythm electroencephalogram. Biol. Cybern., 42, 55–62.

    Article  Google Scholar 

  • Sporns, O. and Tononi, G. (2002) Classes of network connectivity and dynamics. Complexity 7, 28–38.

    Article  Google Scholar 

  • Stam, C. J. and van Dijk, B. W. (2002) Synchronization likelihood, An unbiased estimate of generalized synchronization in multivariate data sets. Physica, 163D, 236–251.

    Google Scholar 

  • Stam, C. J., Pijn, J., Suffczynski, P., and Lopes da Silva, F. H. (1999a) Dynamics of the alpha rhythm: evidence for non-linearity? Clin. Neurophysiol. 110, 1801–1813.

    Article  CAS  Google Scholar 

  • Stam, C. J., van Walsum, A. M. V., and Micheloyannis, S. (2002a) Variability of EEG synchronization during a working memory task in healthy subjects. Int. J. Psychophysiol., 46, 53–66.

    Article  Google Scholar 

  • Stam, C. J., van Walsum, A. M. V., Pijnenburg, Y. A. L., Berendse, H. W., de Munck, J. C., Scheltens, P., and van Dijk, B. W. (2002b) Generalized synchronization of MEG recordings in Alzheimer’s disease. J. Clin. Neurophysiol. 19, 562–574.

    Article  Google Scholar 

  • Stam, C. J., Breakspear, M., van Cappellen van Walsum, A. M., and van Dijk, B. W. (2003) Nonlinear synchronization in EEG and whole-head MEG recordings of healthy subjects. Human Brain Mapping, 19, 63–78.

    Article  Google Scholar 

  • Szentagothai, J. (1983) The modular architectonic principle of neural centers. Rev. Physiol., Biochem. Pharmacology, 98, 11–61.

    Article  CAS  Google Scholar 

  • Takens, F. (1981) Detecting strange attractors in turbulence. Lecture Notes in Mathematics 898, 366–381.

    Article  Google Scholar 

  • Tass, P. A. (2002) Desynchronization of brain rhythms with soft-resetting techniques. Biol. Cybern. 87, 102–115.

    Article  Google Scholar 

  • Terry, J. and Breakspear, M. (2003) An improved algorithm for the detection of nonlinear interdependencies. Biol. Cybern. 88, 129–136.

    Article  Google Scholar 

  • Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., and Farmer, J. (1992) Testing for nonlinearity: the method of surrogate data. Physica. D, 58, 77–94.

    Article  Google Scholar 

  • Theiler, J. and Rapp, P. (1996) Re-examination of the evidence for low-dimensional, nonlinear structure in the human EEG. Electroenceph. Clin. Neurophysiol., 98, 213–222.

    Article  CAS  Google Scholar 

  • Tononi, G., Sporns, O., and Edelman, G. M. (1994) A measure for brain complexity, relating functional segregation and integration in the nervous system. Proc. Natl. Acad. Sci. USA, 91, 5033–5037.

    Article  CAS  Google Scholar 

  • Wright, J. J., Kydd, R., and Lees, G. (1985) State changes in the brain viewed as linear steady-states and nonlinear transitions between steady-states. Biol., Cybern. 53, 11–17.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breakspear, M. “Dynamic” connectivity in neural systems. Neuroinform 2, 205–224 (2004). https://doi.org/10.1385/NI:2:2:205

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/NI:2:2:205

Index Enteries

Navigation