Skip to main content
Log in

RNA interference technologies for understanding and treating neurodegenerative diseases

  • Original Article
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

RNA interference (RNAi) is an evolutionarily conserved process that silences gene expression through double-stranded RNA species in a sequence-specific manner. With the completion of genome sequencing in multiple organisms, RNAi provides an efficient reverse genetics tool to reveal gene functions on a genome-wide scale. Conditional/inducible RNAi offers a new way to analyze gene function at different developmental stages and to create a new generation of animal models of human diseases. The sequence-specificity of RNAi and the fact that it is a naturally occurring process in human make it an excellent therapeutic tool for a wide range of diseases. This article provides a brief review of the current understandings of the mechanism of RNAi and its application to the nervous system, with particular focus on its application to understand mechanisms of neurodegenerative diseases. The prospects of the application of RNAi in clinical setting to treat these devastating diseases will also be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashrafi K., Chang F. Y., Watts J. L., et al. (2003) Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 421, 268–272.

    Article  PubMed  CAS  Google Scholar 

  • Berns K., Hijmans E. M., Mullenders J., et al. (2004) A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428, 431–437.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein E., Caudy A. A., Hammond S. M., and Hannon G. J. (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366.

    Article  PubMed  CAS  Google Scholar 

  • Bonifati V., Rizzu P., van Baren M. J., et al. (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299, 256–259.

    Article  PubMed  CAS  Google Scholar 

  • Boutros M., Kiger A. A., Armknecht S., et al. (2004) Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science 303, 832–835.

    Article  PubMed  CAS  Google Scholar 

  • Brennecke J., Hipfner D. R., Stark A., Russell R. B., and Cohen S. M. (2003) Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113, 25–36.

    Article  PubMed  CAS  Google Scholar 

  • Bridge A. J., Pebernard S., Ducraux A., Nicoulaz A. L., and Iggo R. (2003) Induction of an interferon response by RNAi vectors in mammalian cells. Nat. Genet. 34, 263–264.

    Article  PubMed  CAS  Google Scholar 

  • Brummelkamp T. R., Bernards R., and Agami R. (2002a) Stable suppression of tumorigenicity by virus-mediated RNA interference. Canc. Cell 2, 243–247.

    Article  CAS  Google Scholar 

  • Brummelkamp T. R., Bernards R., and Agami R. (2002b) A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553.

    Article  PubMed  CAS  Google Scholar 

  • Brummelkamp T. R., Nijman S. M., Dirac A. M., and Bernards R. (2003) Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB. Nature 424, 797–801.

    Article  PubMed  CAS  Google Scholar 

  • Byrnes A. P., Rusby J. E., Wood M. J., and Charlton H. M. (1995) Adenovirus gene transfer causes inflammation in the brain. Neuroscience 66, 1015–1024.

    Article  PubMed  CAS  Google Scholar 

  • Calegari F., Haubensak W., Yang D., Huttner W. B., and Buchholz F. (2002) Tissue-specific RNA interference in postimplantation mouse embryos with endoribonuclease-prepared short interfering RNA. Proc. Natl. Acad. Sci. USA 99, 14,236–142,240.

    Article  CAS  Google Scholar 

  • Caplen N. J., Fleenor J., Fire A., and Morgan R. A. (2000) dsRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference. Gene 252, 95–105.

    Article  PubMed  CAS  Google Scholar 

  • Christensen M., Estevez A., Yin X., et al. (2002) A primary culture system for functional analysis of C. elegans neurons and muscle cells. Neuron 33, 503–514.

    Article  PubMed  CAS  Google Scholar 

  • Coburn G. A. and Cullen B. R. (2002) Potent and specific inhibition of human immunodeficiency virus type 1 replication by RNA interference. J. Virol. 76, 9225–9231.

    Article  PubMed  CAS  Google Scholar 

  • Dostie J., Mourelatos Z., Yang M., Sharma A., and Dreyfuss G. (2003) Numerous microRNPs in neuronal cells containing novel microRNAs. RNA 9, 180–186.

    Article  PubMed  CAS  Google Scholar 

  • Dougherty W. G., Lindbo J. A., Smith H. A., Parks T. D., Swaney S., and Proebsting W. M. (1994) RNA-mediated virus resistance in transgenic plants: exploitation of a cellular pathway possibly involved in RNA degradation. Mol. Plant Microbe Interact. 7, 544–552.

    PubMed  CAS  Google Scholar 

  • Downward J. (2004) RNA interference. BMJ 328, 1245–1248.

    Article  PubMed  CAS  Google Scholar 

  • Dykxhoorn D. M., Novina C. D., and Sharp P. A. (2003) Killing the messenger: short RNAs that silence gene expression. Nat. Rev. Mol. Cell Biol. 4, 457–467.

    Article  PubMed  CAS  Google Scholar 

  • Eaton B. A., Fetter R. D., and Davis G. W. (2002) Dynactin is necessary for synapse stabilization. Neuron 34, 729–741.

    Article  PubMed  CAS  Google Scholar 

  • Elbashir S. M., Harborth J., Lendeckel W., Yalcin A., Weber K., and Tuschl T. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Funez P., Nino-Rosales M. L., de Gouyon B., et al. (2000) Identification of genes that modify ataxin-1-induced neurodegeneration. Nature 408, 101–106.

    Article  PubMed  CAS  Google Scholar 

  • Fire A., Xu S., Montgomery M. K., Kostas S. A., Driver S. E., and Mello C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811.

    Article  PubMed  CAS  Google Scholar 

  • Gil J. and Esteban M. (2000) Induction of apoptosis by the dsRNA-dependent protein kinase (PKR): mechanism of action. Apoptosis 5, 107–114.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg M. S., Fleming S. M., Palacino J. J., et al. (2003) Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J. Biol. Chem. 278, 43,628–43,635.

    CAS  Google Scholar 

  • Gonczy P., Echeverri C., Oegema K., et al. (2000) Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 408, 331–336.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Alegre P., Miller V. M., Davidson B. L., and Paulson H. L. (2003) Toward therapy for DYT1 dystonia: allele-specific silencing of mutant TorsinA. Ann. Neurol. 53, 781–787.

    Article  PubMed  CAS  Google Scholar 

  • Greene J. C., Whitworth A. J., Kuo I., Andrews L. A., Feany M. B., and Pallanck L. J. (2003) Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc. Natl. Acad. Sci. USA 100, 4078–4083.

    Article  PubMed  CAS  Google Scholar 

  • Guo S. and Kemphues K. J. (1995) par-1, A gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81, 611–620.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton A. J. and Baulcombe D. C. (1999). A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950–952.

    Article  PubMed  CAS  Google Scholar 

  • Hammond S. M., Bernstein E., Beach D. and Hannon G. J. (2000). An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–296.

    Article  PubMed  CAS  Google Scholar 

  • Hannon G. J., (2002). RNA interference. Nature 418, 244–251.

    Article  PubMed  CAS  Google Scholar 

  • Hardy J. and Selkoe D. J., (2002). The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297, 353–356.

    Article  PubMed  CAS  Google Scholar 

  • Hasuwa H., Kaseda K., Einarsdottir T., and Okabe M. (2002) Small interfering RNA and gene silencing in transgenic mice and rats. FEBS Lett. 532, 227–230.

    Article  PubMed  CAS  Google Scholar 

  • Hasuwa H., and Okabe M. (2004). RNAi in living mice. Meth. Mol. Biol. 252, 501–508.

    CAS  Google Scholar 

  • Itier J. M., Ibanez P., Mena M. A., et al. (2003) Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse. Hum. Mol. Genet. 12, 2277–2291.

    Article  PubMed  CAS  Google Scholar 

  • Jackson A. L., Bartz S. R., Schelter J., et al. and Linsley P. S. (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol. 21, 635–637.

    Article  PubMed  CAS  Google Scholar 

  • Jiang C. and Schuman E. M. (2002). Regulation and function of local protein synthesis in neuronal dendrites. Trends Biochem. Sci. 27, 506–513.

    Article  PubMed  CAS  Google Scholar 

  • Job C. and Eberwine J. (2001). Localization and translation of mRNA in dendrites and axons. Nat. Rev. Neurosci. 2, 889–898.

    Article  PubMed  CAS  Google Scholar 

  • Kalidas S. and Smith D. P. (2002). Novel genomic cDNA hybrids produce effective RNA interference in adult Drosophila. Neuron 33, 177–184.

    Article  PubMed  CAS  Google Scholar 

  • Kamath R. S., Fraser A. G., Dong Y., et al. (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237.

    Article  PubMed  CAS  Google Scholar 

  • Kao S. C., Krichevsky A. M., Kosik K. S., and Tsai L. H. (2004). BACE1 suppression by RNA interference in primary cortical neurons. J. Biol. Chem. 279, 1942–1949.

    Article  PubMed  CAS  Google Scholar 

  • Kennerdell J. R. and Carthew R. W. (1998). Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95, 1017–1026.

    Article  PubMed  CAS  Google Scholar 

  • Kennerdell J. R. and Carthew R. W. (2000). Heritable gene silencing in Drosophila using double-stranded RNA. Nat. Biotechnol. 18, 896–898.

    Article  PubMed  CAS  Google Scholar 

  • Ketting R. F., Fischer S. E., Bernstein E., Sijen T., Hannon G. J., and Plasterk R. H. (2001). Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Gene Dev. 15, 2654–2659.

    Article  PubMed  CAS  Google Scholar 

  • Kiger A., Baum B., Jones S., et al. (2003). A functional genomic analysis of cell morphology using RNA interference J. Biol. 2, 27.

    Article  PubMed  CAS  Google Scholar 

  • Kim J., Krichevsky A., Grad Y., et al. (2004a). Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proc. Natl. Acad. Sci. USA 101, 360–365.

    Article  PubMed  CAS  Google Scholar 

  • Kim Y. O., Park S. J., Balaban R. S., Nirenberg M., and Kim Y. (2004b). A functional genomic screen for cardiogenic genes using RNA interference in developing Drosophila embryos. Proc. Natl. Acad. Sci. USA 101, 159–164.

    Article  PubMed  CAS  Google Scholar 

  • Kitada T., Asakawa S., Hattori N., et al. (1998). Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608.

    Article  PubMed  CAS  Google Scholar 

  • Knight S. W. and Bass B. L. (2001). A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 293, 2269–2271.

    Article  PubMed  CAS  Google Scholar 

  • Korneev S. A., Kemenes I., Straub V., et al. (2002). Suppression of nitric oxide (NO)-dependent behavior by double-stranded RNA-mediated silencing of a neuronal NO synthase gene. J. Neurosci. 22, RC227.

    Google Scholar 

  • Krichevsky A. M. and Kosik K. S. (2002). RNAi functions in cultured mammalian neurons. Proc. Natl. Acad. Sci. USA 99, 11,926–11,929.

    Article  CAS  Google Scholar 

  • Kumagai M. H., Donson J., della-Cioppa G., Harvey D., Hanley K., and Grill L. K. (1995). Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc. Natl. Acad. Sci. USA 92, 1679–1683.

    Article  PubMed  CAS  Google Scholar 

  • Lau N. C., Lim L. P., Weinstein E. G., and Bartel D. P. (2001). An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862.

    Article  PubMed  CAS  Google Scholar 

  • Lee R. C. and Ambros V. (2001). An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862–864.

    Article  PubMed  CAS  Google Scholar 

  • Lee R. C., Feinbaum, R. L., and Ambros V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854.

    Article  PubMed  CAS  Google Scholar 

  • Lee S. S., Lee R. Y., Fraser A. G., Kamath R. S., Ahringer J., and Ruvkun G. (2003). A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat. Genet. 33, 40–48.

    Article  PubMed  CAS  Google Scholar 

  • Lee Y. S., Nakahara K., Pham J. W., et al. (2004). Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA / miRNA silencing pathways. Cell 117, 69–81.

    Article  PubMed  CAS  Google Scholar 

  • Lim L. P., Glasner M. E., Yekta S., Burge C. B., and Bartel D. P. (2003a). Vertebrate microRNA genes. Science 299, 1540.

    Article  PubMed  CAS  Google Scholar 

  • Lim L. P., Lau N. C., Weinstein E. G., et al. (2003b). The microRNAs of Caenorhabditis elegans. Genes Dev 17, 991–1008.

    Article  PubMed  CAS  Google Scholar 

  • Lin R., Thompson S., and Priess J. R. (1995). pop-1 Encodes an HMG box protein required for the specification of a mesoderm precursor in early C. elegans embryos. Cell 83, 599–609.

    Article  PubMed  CAS  Google Scholar 

  • Lum L., Yao S., Mozer B., et al. (2003). Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science 299, 2039–2045.

    Article  PubMed  CAS  Google Scholar 

  • Martin K. C., and Kosik K. S. (2002). Synaptic tagging—who’s it? Nat. Rev. Neurosci. 3, 813–820.

    Article  PubMed  CAS  Google Scholar 

  • Martinek S. and Young M. W. (2000). Specific genetic interference with behavioral rhythms in Drosophila by expression of inverted repeats. Genetics 156, 1717–1725.

    PubMed  CAS  Google Scholar 

  • Matsuda T. and Cepko C. L. (2004). Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc. Natl. Acad. Sci. USA 101, 16–22.

    Article  PubMed  CAS  Google Scholar 

  • Matsukura S., Jones P. A., and Takai D. (2003). Establishment of conditional vectors for hairpin siRNA knockdowns. Nucleic Acids Res. 31, e77.

    Google Scholar 

  • Maxwell M. M., Pasinelli P., Kazantsev A. G., and Brown R. H., Jr. (2004). RNAinterference-mediated silencing of mutant superoxide dismutase rescues cyclosporin A-induced death in cultured neuroblastoma cells. Proc. Natl. Acad. Sci. USA 101, 3178–3183.

    Article  PubMed  CAS  Google Scholar 

  • McCaffrey A. P., Nakai H., Pandey K., et al. (2003). Inhibition of hepatitis B virus in mice by RNA interference. Nat. Biotechnol. 21, 639–644.

    Article  PubMed  CAS  Google Scholar 

  • Miller V. M., Xia H., Marrs G. L., et al. (2003). Allele-specific silencing of dominant disease genes. Proc. Natl. Acad. Sci. USA 100, 7195–7200.

    Article  PubMed  CAS  Google Scholar 

  • Murphy C. T., McCarroll S. A., Bargmann C. I., et al. (2003). Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424, 277–283.

    Article  PubMed  CAS  Google Scholar 

  • Napoli C., Lemieux C., and Jorgensen R. (1990). Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2, 279–289.

    Article  PubMed  CAS  Google Scholar 

  • Nollen E. A., Garcia S. M., van Haaften G., et al. (2004). Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation. Proc. Natl. Acad. Sci. USA 101, 6403–6408.

    Article  PubMed  CAS  Google Scholar 

  • Novina C. D. and Sharp P. A. (2004). The RNAi revolution. Nature 430, 161–164.

    Article  PubMed  CAS  Google Scholar 

  • Paddison P. J., Caudy A. A., Bernstein E., Hannon G. J., and Conklin D. S. (2002). Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Gene Dev. 16, 948–958.

    Article  PubMed  CAS  Google Scholar 

  • Paddison P. J., Silva J. M., Conklin D. S., et al. (2004). Aresource for large-scale RNA-interference-based screens in mammals. Nature 428, 427–431.

    Article  PubMed  CAS  Google Scholar 

  • Pham J. W., Pellino J. L., Lee Y. S., Carthew R. W., and Sontheimer E. J. (2004). A Dicer-2-dependent 80s complex cleaves targeted mRNAs during RNAi in Drosophila. Cell 117, 83–94.

    Article  PubMed  CAS  Google Scholar 

  • Pothof J., van Haaften G., Thijssen K., et al. (2003). Identification of genes that protect the C. elegans genome against mutations by genome-wide RNAi. Gene Dev. 17, 443–448.

    Article  PubMed  CAS  Google Scholar 

  • Ramet M., Manfruelli P., Pearson A., Mathey-Prevot B., and Ezekowitz R. A. (2002). Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature 416, 644–648.

    Article  PubMed  CAS  Google Scholar 

  • Romano N. and Macino G. (1992). Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol. Microbiol. 6, 3343–3353.

    Article  PubMed  CAS  Google Scholar 

  • Scherr M., Battmer K., Winkler T., Heidenreich O., Ganser A. and Eder M. (2003). Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood 101, 1566–1569.

    Article  PubMed  CAS  Google Scholar 

  • Shinagawa T. and Ishii S. (2003). Generation of Ski-knockdown mice by expressing a long double-strand RNA from an RNA polymerase II promoter. Gene Dev. 17, 1340–1345.

    Article  PubMed  CAS  Google Scholar 

  • Staropoli J. F., McDermott C., Martinat C., Schulman B., Demireva E. and Abeliovich A. (2003). Parkin is a component of an SCF-like ubiquitin ligase complex and protects postmitotic neurons from kainate excitotoxicity. Neuron 37, 735–749.

    Article  PubMed  CAS  Google Scholar 

  • Sui G., Soohoo C., Affar el B., Gay F., Shi Y. and Forrester W. C. (2002). ADNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. USA 99, 5515–5520.

    Article  PubMed  CAS  Google Scholar 

  • Takasugi N., Tomita T., Hayashi I., et al. (2003). The role of presenilin cofactors in the gamma-secretase complex. Nature 422, 438–441.

    Article  PubMed  CAS  Google Scholar 

  • Tijsterman M., and Plasterk R. H. (2004). Dicers at RISC; the mechanism of RNAi. Cell 117, 1–3.

    Article  PubMed  CAS  Google Scholar 

  • Timmons L., Court D. L., and Fire A. (2001). Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263, 103–112.

    Article  PubMed  CAS  Google Scholar 

  • Trulzsch B., Davies K., and Wood M. (2004). Survival of motor neuron gene downregulation by RNAi: towards a cell culture model of spinal muscular atrophy. Mol. Brain Res. 120, 145–150.

    Article  PubMed  CAS  Google Scholar 

  • Tuschl T., Zamore P. D., Lehmann R., Bartel D. P., and Sharp P. A. (1999). Targeted mRNA degradation by double-stranded RNA in vitro. Gene Dev. 13, 3191–3197.

    Article  PubMed  CAS  Google Scholar 

  • Valente E. M., Abou-Sleiman P. M., Caputo V., et al. (2004). Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304, 1158–1160.

    Article  PubMed  CAS  Google Scholar 

  • van de Wetering M., Oving I., Muncan V., et al. (2003). Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO Rep. 4, 609–615.

    Article  PubMed  CAS  Google Scholar 

  • van der Krol A. R., Mur L. A., Beld M., Mol J. N., and Stuitje A. R. (1990). Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2, 291–299.

    Article  PubMed  Google Scholar 

  • Wall N. R., and Shi Y., (2003). Small RNA: can RNA interference be exploited for therapy? Lancet 362, 1401–1403.

    Article  PubMed  CAS  Google Scholar 

  • Wang J., Tekle E., Oubrahim H., Mieyal J. J., Stadtman E. R., and Chock P. B. (2003). Stable and controllable RNA interference: investigating the physiological function of glutathionylated actin. Proc. Natl. Acad. Sci. USA 100, 5103–5106.

    Article  PubMed  CAS  Google Scholar 

  • Wightman B., Ha I., and Ruvkun G. (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862.

    Article  PubMed  CAS  Google Scholar 

  • Wilda M., Fuchs U., Wossmann W., and Borkhardt A. (2002). Killing of leukemic cells with a BCR / ABL fusion gene by RNA interference (RNAi). Oncogene 21, 5716–5724.

    Article  PubMed  CAS  Google Scholar 

  • Wohlbold L., van der Kuip H., Miething C., et al. (2003). Inhibition of bcr-abl gene expression by small interfering RNA sensitizes for imatinib mesylate (STI571). Blood 102, 2236–2239.

    Article  PubMed  CAS  Google Scholar 

  • Wood M. J., Trulzsch B., Abdelgany A., and Beeson D. (2003). Therapeutic gene silencing in the nervous system. Hum. Mol. Genet. 12 (Spec. No. 22,) R279-R284.

    Article  PubMed  CAS  Google Scholar 

  • Xia H., Mao Q., Paulson H. L., and Davidson B. L. (2002). siRNA-mediated gene silencing in vitro and in vivo. Nat. Biotechnol. 20, 1006–1010.

    Article  PubMed  CAS  Google Scholar 

  • Yang Y., Kaul S., Zhang D., Anantharam V., and Kanthasamy A. G. (2004). Suppression of caspase-3-dependent proteolytic activation of protein kinase C delta by small interfering RNA prevents MPP+-induced dopaminergic degeneration. Mol. Cell. Neurosci. 25, 406–421.

    Article  PubMed  CAS  Google Scholar 

  • Yang Y., Nishimura I., Imai Y., Takahashi R., and Lu B. (2003). Parkin suppresses dopaminergic neuron-selective neurotoxicity induced by Pael-R in Drosophila. Neuron 37, 911–924.

    Article  PubMed  CAS  Google Scholar 

  • Yu H., Saura C. A., Choi S. Y., et al. (2001). APP processing and synaptic plasticity in presenilin-1 conditional knockout mice. Neuron 31, 713–726.

    Article  PubMed  CAS  Google Scholar 

  • Zamore P. D., Tuschl T., Sharp P. A., and Bartel D. P. (2000). RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33.

    Article  PubMed  CAS  Google Scholar 

  • Zender L., Hutker S., Liedtke C., et al. (2003). Caspase 8 small interfering RNA prevents acute liver failure in mice. Proc. Natl. Acad. Sci. USA 100, 7797–7802.

    Article  PubMed  CAS  Google Scholar 

  • Zoghbi H. Y. and Orr H. T. (2000). Glutamine repeats and neurodegeneration. Annu. Rev. Neurosci. 23, 217–247.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingwei Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, B. RNA interference technologies for understanding and treating neurodegenerative diseases. Neuromol Med 6, 1–12 (2004). https://doi.org/10.1385/NMM:6:1:001

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/NMM:6:1:001

Index Entries

Navigation