Skip to main content
Log in

Axonal transport, tau protein, and neurodegeneration in Alzheimer’s disease

  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

The molecular causes and the genetic and environmental modifying factors of the sporadic form of Alzheimer’s disease (AD) remain elusive. Extrapolating from the known mutations that cause the rare familial forms and from the typical post-mortem pathological lesions in all AD patients—e.g., amyloid plaques and neurofibrillary tangles (NFTs)—the evident molecular candidates are amyloid precursor protein (APP), presenilin, and tau protein. To include ApoE4 as the only certain genetic modifier known leaves us to face the challenge of implementing these very different molecules into an evident pathological partnership. In more than one respect, the proposition of disturbed axonal transport appears attractive with more details becoming available on APP processing and microtubular transport and also of the pathology in the model systems—e.g., transgenic mice expressing APP or protein tau. Conversely, the resistance of APP-transgenic mice with full-blown amyloid pathology to also develop tau-related neurofibrillar pathology is a major challenge for this hypothesis. From the most relevant data discussed here, we conclude that the postulate of disturbed axonal transport as the primary event in AD is difficult to defend. On the other hand, failing axonal transport appears to be of major importance in the later stages in AD, by further compromising tau protein, APP metabolism, and synaptic functioning. Protein tau may thus be the central “executer” in the chain of events leading from amyloid neurotoxicity to tau hyperphosphorylation, microtubular destabilization, disturbed axonal transport, and synaptic failure to neurodegeneration. In order to identify normal physiological processes and novel pathological targets, definition is needed—in molecular detail—of the complex mechanisms involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alonso A. C., Grundke-Iqbal I., and Iqbal K. (1996) Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat. Med. 2, 783–787.

    Article  PubMed  CAS  Google Scholar 

  • Alonso A. C., Zaidi T., Novak M., Grundke-Iqbal I., and Iqbal K. (2001) Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. PNAS 98, 6923–6928.

    Article  PubMed  CAS  Google Scholar 

  • Baas P. W., Pienkowski T. P., and Kosik K. S. (1991) Processes induced by tau expression in Sf9 cells have an axon-like microtubule organization. J. Cell Biol. 115, 1333–1344.

    Article  PubMed  CAS  Google Scholar 

  • Baumann K., Mandelkow E.-M., Biernat J., Piwnica-Worms H., and Mandelkow E. (1993) Abnormal Alzheimer-like phosphorylation of protein tau by cyclin-dependent kinases cdk2 and cdk5. FEBS Lett. 336, 417–424.

    Article  PubMed  CAS  Google Scholar 

  • Biernat J. and Mandelkow E.-M. (1999) The development of cell processes induced by protein tau requires phosphorylation of serine 262 and 356 in the repeat domain and is inhibited by phosphorylation in the proline-rich domains. Mol. Biol. Cell 10, 727–740.

    PubMed  CAS  Google Scholar 

  • Braak E. and Braak E. (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259.

    Article  PubMed  CAS  Google Scholar 

  • Braak E., Braak H., and Mandelkow E.-M. (1994) A sequence of cytoskeletal changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol. 87, 554–567.

    PubMed  CAS  Google Scholar 

  • Buée L., Bussière T., Buée-Scherrer V., Delacourte A., and Hof P. R. (2000) Tau protein isoforms, phosphorylation and role in neurogenerative disorders. Brain Res. Rev. 33, 95–130.

    Article  PubMed  Google Scholar 

  • Caceras A. and Kosik K. S. (1990) Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons. Nature 343, 461–463.

    Article  Google Scholar 

  • Caceras A., Potrebic S., and Kosik K. S. (1991) The effect of tau antisense oligonucleotides on neurite formation of cultured cerebellar macroneurons. J. Neurosci. 11, 1515–1523.

    Google Scholar 

  • Delacourte A. and Buée L. (2000) Tau pathology: a marker of neurodegenerative disorders. Curr. Opin. Neurol. 13, 371–376.

    Article  PubMed  CAS  Google Scholar 

  • Delacourte A., David J. P., Sergeant N., et al. (1999) The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer’s disease. Neurology 52, 1158–1165.

    PubMed  CAS  Google Scholar 

  • Dewachter I., Van Dorpe J., Smeijers L., Gilis M., Kuiperi C., Laenen I., et al. (2000) Aging increased amyloid peptide and caused amyloid plaques in brain of old APP/V717I transgenic mice by a different mechanism than mutant presenilin 1. J. Neurosci. 20, 6452–6458.

    PubMed  CAS  Google Scholar 

  • Dewachter I., Reverse D., Caluwaerts N., Ris L., Kuipéri C., Van den Haute C., et al. (2002) Neuronal deficiency of presenilin 1 inhibits amyloid plaque formation and corrects hippocampal long-term potentiation but not a cognitive defect of amyloid precursor protein [V717I] transgenic mice. J. Neurosci. 22, 3445–3453.

    PubMed  CAS  Google Scholar 

  • Drewes G., Lichtenberg-Kraag B., Doring F., Mandelkow E.-M., Biernat J., Goris J., et al. (1992) Mitogen activated protein (MAP) kinase transforms protein tau into an Alzheimer-like state. EMBO J. 11, 2131–2138.

    PubMed  CAS  Google Scholar 

  • Drewes G., Mandelkow E.-M., Baumann K., Goris J., Merlevede W., and Mandelkow E. (1993) Dephosphorylation of protein tau and Alzheimer paired helical filaments by calcineurin and phosphatase-2A. FEBS Lett. 336, 424–432.

    Article  Google Scholar 

  • Drubin D. G. and Kirschner M. W. (1986) Protein tau function in living cells. J. Cell Biol. 103, 2739–2746.

    Article  PubMed  CAS  Google Scholar 

  • Ebneth A., Godeman R., Stamer K., Illenberger S., Trinczek B., Mandelkow E.-M., et al. (1998) Overexpression of protein tau inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmatic reticulum: implications for Alzheimer’s disease. J. Cell Biol. 143, 777–794.

    Article  PubMed  CAS  Google Scholar 

  • Esler W. P. and Wolfe M. S. (2001) A portrait of Alzheimer secretases—new features and familiar faces. Science 293, 1449–1454.

    Article  PubMed  CAS  Google Scholar 

  • Elyaman W., Terro F., Wong N. S., and Hugon J. (2002) In vivo activation and nuclear translocation of phosphorylated glycogen synthase kinase-3β in neuronal apoptosis: links to tau phosphorylation Eur. J. Neurosci. 15, 651–660.

    Article  PubMed  CAS  Google Scholar 

  • Friedhoff P., von Bergen M., Mandelkow E.-M., and Mandelkow E. (2000) Structure of protein tau and assembly into paired helical filaments. BBA 1502, 122–132.

    PubMed  CAS  Google Scholar 

  • Geula C., Wu C. K., Saroff D., Lorenzo A., Yuan M., and Yankner B. A. (1998) Aging renders the brain vulnerable to amyloid-β protein neurotoxicity. Nat. Med. 4, 827–831.

    Article  PubMed  CAS  Google Scholar 

  • Goedert M., Spillantini M. G., Potier M. C., Ulrich J., and Crowther R. A. (1989) Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of protein tau mRNAs in human brain. EMBO J. 8, 393–399.

    PubMed  CAS  Google Scholar 

  • Goedert M. and Jakes R. (1990) Expression of separate isoforms of human tau protein: correlation with the tau pattern in brain and effects on tubulin polymerisation. EMBO J. 9, 4225–4230.

    PubMed  CAS  Google Scholar 

  • Goedert M., Hasegawa M., Jakes R., Lawler S., Cuenda A., and Cohen P. (1997) Phosphorylation of microtubule-associated protein tau by stress-activated protein kinases. FEBS Lett. 409, 57–62.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein L. S. B. (2001) Kinesin molecular motors: transport pathways, receptors, and human disease. PNAS 98, 6999–7003.

    Article  PubMed  CAS  Google Scholar 

  • Götz J., Chen F., Van Dorpe J., and Nitsch R. M. (2001) Formation of neurofibrillary tangles in P301L tau transgenic mice induced by Aβ42 fibrils. Science 293, 1491–1495.

    Article  PubMed  Google Scholar 

  • Greenwood J. A., Scott C. W., Spreen R. C., Caputo C. B., and Johnson G. V. (1994) Casein kinase II preferentially phosphorylates tau isoforms containing an amino-terminal insert. Identification of threonine 39 as the primary phosphate acceptor. J. Biol. Chem. 269, 4373–4380.

    PubMed  CAS  Google Scholar 

  • Gunawardena S. and Goldstein L. S. B. (2001) Disruption of axonal transport and neuronal viability by amyloid precursor protein mutations in Drosophila. Neuron 32, 389–401.

    Article  PubMed  CAS  Google Scholar 

  • Hanemaaijer R. and Ginzburg I. (1991) Involvement of mature tau isoforms in the stabilization of neurites in PC12 cells. J. Neurosci. 30, 163–171.

    Article  CAS  Google Scholar 

  • Harada A., Oguchi K., Okabe S., Kuno J., Terada S., Oshima T., et al. (1994) Altered microtubule organization in small-calibre axons of mice lacking tau protein. Nature 369, 488–491.

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa M., Smith M. J., and Goedert M. (1998) Tau proteins with FTDP-17 mutations have reduced ability to promote microtubule assembly. FEBS Lett. 437, 207–210.

    Article  PubMed  CAS  Google Scholar 

  • Hong M., Zhukareva V., Vogelsberg-Ragaglia V., Wszolek Z., Reed L., Miller B. I., et al. (1998) Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science 282, 1914–1917.

    Article  PubMed  CAS  Google Scholar 

  • Hutton M., Lendon C. L., Rizzu P., Baker M., Froelich S., Houlden H., et al. (1998) Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393, 702–705.

    Article  PubMed  CAS  Google Scholar 

  • Iqbal K., Grundke-Iqbal I., Zaidi T., Merz P. A., Wen G. Y., Shaikh S. S., et al. (1986) Defective brain microtubule assembly in Alzheimer’s disease. Lancet 2, 421–426.

    Article  PubMed  CAS  Google Scholar 

  • Ishihara T., Higuchi M., Zhang B., Yoshiyama Y., Hong M., Trojanowski J. Q., et al. (2001a) Attenuated neurodegenerative disease phenotype in tau transgenic mouse lacking neurofilaments. J. Neurosci. 21, 6026–6035.

    PubMed  CAS  Google Scholar 

  • Ishihara T., Zhang B., Higuchi M., Yoshiyama Y., Trojanowski J. Q., and Lee V. M.-Y. (2001b) Age-dependent induction of congophilic neurofibrillary tau inclusions in tau transgenic mice. Am. J. Pathol. 158, 555–562.

    PubMed  CAS  Google Scholar 

  • Jackson G. R., Wiedau-Pazos M., Sang T.-K., Wagle N., Brown C. A., Massachi S., et al. (2002) Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. Neuron 34, 509–519.

    Article  CAS  Google Scholar 

  • Johnson G. V. (1992) Differential phosphorylation of tau by cyclic AMP-dependent protein kinase and Ca2+/calmodulin-dependent protein kinase II: metabolic and functional consequences. J. Neurochem. 59, 2056–2062.

    Article  PubMed  CAS  Google Scholar 

  • Kamal A., Stokin G. B., Yang Z., Xia C.-H., and Goldstein S. B. (2000) Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-1. Neuron 28, 449–459.

    Article  PubMed  CAS  Google Scholar 

  • Kamal A., Almenar-Queralt A., Leblanc J. F., Roberts E. A., and Goldstein L. S. B. (2001) Kinesin-mediated axonal transport of a membrane compartment containing β-secretase and presenilin-1 requires APP. Nature 414, 643–647.

    Article  PubMed  CAS  Google Scholar 

  • Koo E. H., Lansbury P. T. Jr, and Kelly J. W. (1999) Amyloid diseases: abnormal protein aggregation in neurodegeneration. PNAS 96, 9989–9990.

    Article  PubMed  CAS  Google Scholar 

  • Khatoon S., Grundke-Iqbal I., and Iqbal K. (1992) Brain levels of microtubule-associated protein tau are elevated in Alzheimer’s disease: a radioimmunoslot-blot assay for nanograms of the protein. J. Neurochem. 59, 750–753.

    Article  PubMed  CAS  Google Scholar 

  • Ksiezak-Reding H., Binder L. I., and Yen S. H. (1988) Immunochemical and biochemical characterization of tau protein in normal and Alzheimer’s disease brains with Alz 50 and Tau-1. J. Biol. Chem. 263, 7948–7953.

    PubMed  CAS  Google Scholar 

  • Künzi V., Glatzel M., Nakano M. Y., Greber U. F., Van Leuven F., and Aguzzi A. (2002) Unhampered prion neuroinvasion despite impaired fast axonal transport in transgenic mice overexpressing four-repeat tau. J. Neurosci. 22, 7471–7477.

    PubMed  Google Scholar 

  • Lambert M. P., Barlow A. K., Chromy B. A., Edwards C., Freed R., Liosatos M., et al. (1998) Diffusible, nonfibrillar ligands derived from Aβ1-42 are potent central nervous system neurotoxins. PNAS 95, 6448–6453.

    Article  PubMed  CAS  Google Scholar 

  • Lee G., Neve R. L., and Kosik K. S. (1989) The microtubule binding domain of tau protein. Neuron 2, 1615–1624.

    Article  PubMed  CAS  Google Scholar 

  • Lewis J., Dickson D. W., Lin W.-L., Chisholm L., Corral A., Jones G., Yen S.-H., et al. (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293, 1487–1491.

    Article  PubMed  CAS  Google Scholar 

  • Lucas J. J., Hernandez F., Gomez-Ramos P., Moran M. A., Hen R. and Avila J. (2001) Decreased nuclear β-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3β conditional transgenic mice. EMBO J. 20, 27–39.

    Article  PubMed  CAS  Google Scholar 

  • Mandelkow E.-M., Biernat J., Drewes G., Gustke N., Trinczek B., and Mandelkow E. (1995) Tau domains, phosphorylation, and interaction with microtubules. Neurobiol. Aging 16, 355–363.

    Article  PubMed  CAS  Google Scholar 

  • Matsuo E. S., Shin R.-W., Billingsley M. L., Van de Voorde A., O’Connor M., Trojanowski J. Q., et al. (1994) Biopsy-derived adult human tau is phosphorylated at many of the same sites as Alzheimer’s disease paired helical filament tau. Neuron 13, 989–1002.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P. (1997) Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol. Rev. 77, 1081–1132.

    PubMed  CAS  Google Scholar 

  • Mattson M. P., Fu W., Waeg G., and Uchida K. (1997) 4-Hydroxynonenal, a product of lipid peroxidation, inhibits dephosphorylation of the microtubule-associated protein tau. Neuroreport 8, 2275–2281.

    Article  PubMed  CAS  Google Scholar 

  • Michel G., Mercken M., Murayama M., Noguchi K., Ishiguro K., Imahori K., et al. (1998) Characterization of tau phosphorylation in glycogen synthase kinase-3β and cyclin dependent kinase-5 activator (p23) transfected cells. BBA 1380, 177–182.

    PubMed  CAS  Google Scholar 

  • Moechars D., Dewachter I., Lorent K., Reverse D., Baekelandt V., Naidu A., et al. (1999) Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. J. Biol. Chem. 274, 6483–6492.

    Article  PubMed  CAS  Google Scholar 

  • Morfini G., Szebenyi G., Elluru R., Ratner N., and Brady S. T. (2002) Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility. EMBO J. 21, 281–293.

    Article  PubMed  CAS  Google Scholar 

  • Nakazato Y., Sasaki A., Hirato J., and Ishida Y. (1984) Immunohistochemical localization of neurofilament protein in neuronal degenerations. Acta Neuropathol. (Berl.) 64, 30–36.

    Article  CAS  Google Scholar 

  • Norlund M. A., Lee J. M., Zainelli G. M., and Muma N. A. (1999) Elevated transglutaminase-induced bonds in PHF tau in Alzheimer’s disease. Brain Res. 851, 154–163.

    Article  PubMed  CAS  Google Scholar 

  • Nuydens R., Van den Kieboom G., Nolten C., Verhulst C., Van Osta P., Spittaels K., et al. (2002) Coexpression of GSK-3β corrects phenotypic aberrations of dorsal root ganglion cells, cultured from adult transgenic mice overexpressing human protein tau. Neurobiol. Dis. 9, 38–48.

    Article  PubMed  CAS  Google Scholar 

  • Patrick G. N., Zukerberg L., Nikolic M., De La Monte S., Dikkes P., and Tsai L. H. (1999) Conversion of p35 to p25 deregulates cdk5 activity and promotes neurodegeneration. Nature 402, 615–622.

    Article  PubMed  CAS  Google Scholar 

  • Pedersen W. A., Culmsee C., Ziegler D., Herman J. P., and Mattson M. P. (1999) Aberrant stress response associated with severe hypoglycemia in a transgenic mouse model of Alzheimer’s disease. J. Mol. Neurosci. 13, 159–165.

    Article  PubMed  CAS  Google Scholar 

  • Pei J. J., Braak E., Braak H., Grundke-Iqbal I., Iqbal K., Winblad B., et al. (1999) Distribution of active glycogen synthase kinase-3β (GSK-3β) in brains staged for Alzheimer disease neurofibrillary changes. J. Neuropathol. Exp. Neurol. 58, 1010–1019.

    Article  PubMed  CAS  Google Scholar 

  • Perry G., Kawai M., Tabaton M., Onorato M., Mulvihill P., Richey P., et al. (1991) Neuropil threads of Alzheimer’s disease show a marked alteration of the normal cytoskeleton. J. Neurosci. 11, 1748–1755.

    PubMed  CAS  Google Scholar 

  • Rapoport M. and Ferreira A. (2000) PD98059 prevents neurite degeneration induced by fibrillar β-amyloid in mature hippocampal neurons. J. Neurochem. 74, 125–133.

    Article  PubMed  CAS  Google Scholar 

  • Rapoport M., Dawson H. N., Binder L. I., Vitek M. P., and Ferreira A. (2002) Tau is essential to β-amyloid-induced neurotoxicity. PNAS 99, 6364–6369.

    Article  PubMed  CAS  Google Scholar 

  • Rouleau G. A., Clarke A. W., Rooke K., Pramatarova A., Krizus A., Suchowersky O., et al. (1996) SOD1 mutation is associated with accumulations of neurofilaments in amyotrophic lateral sclerosis. Ann. Neurol. 39, 128–131.

    Article  PubMed  CAS  Google Scholar 

  • Ruben G. C., Ciardelli T. L., Grundke-Iqbal I., and Iqbal K. (1997) Alzheimer disease hyperphosphorylated tau aggregates hydrophobically. Synapse 27, 208–229.

    Article  PubMed  CAS  Google Scholar 

  • Sawamura N., Gong J.-S., Garver W. S., Heidenreich R. A., Ninomiya H., Ohno K., et al. (2001) Site-specific phosphorylation of tau accompanied by activation of mitogen-activated protein kinase (MAPK) in brains of Niemann-Pick type C mice. J. Biol. Chem. 276, 10,314–10,319.

    Article  CAS  Google Scholar 

  • Scott C. W., Blowers D. P., Barth P. T., Lo M. M., Salama A. I., and Caputo C. B. (1991) Differences in the abilities of human tau isoforms to promote microtubule assembly. J. Neurosci. Res. 30, 154–162.

    Article  PubMed  CAS  Google Scholar 

  • Shankar S. K., Yanagihara R, Garruto R. M., Grundke-Iqbal I, Kosik K. S., and Gajdusek D. C. (1989) Immunocytochemical characterization of neurofibrillary tangles in amyotrophic lateral sclerosis and parkinsonism-dementia of Guam. Ann. Neurol. 25, 146–151.

    Article  PubMed  CAS  Google Scholar 

  • Sisodia S. S. and St. George-Hyslop P. H. (2002) γ-secretase, Notch, Aβ and Alzheimer’s disease: where do the presenilins fit in? Nature Rev. Neurosci. 3, 281–290.

    Article  CAS  Google Scholar 

  • Spillantini M. G., Murrell J. R., Goedert M., Farlow M. R., Klug A., and Ghetti B. (1998) Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. PNAS 95, 7737–7741.

    Article  PubMed  CAS  Google Scholar 

  • Spittaels K., Van den Haute C., Van Dorpe J., Bruynseels K., et al. (1999) Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein. Am. J. Pathol. 155, 2153–2165.

    PubMed  CAS  Google Scholar 

  • Spittaels K., Van den Haute C., Van Dorpe J., Geerts H., Mercken M., Bruynseels K., et al. (2000) Glycogen synthase kinase-3β phosphorylates tau and rescues axonopathy in the central nervous system of human four-repeat tau transgenic mice. J. Biol. Chem. 275, 41,340–41,349.

    Article  CAS  Google Scholar 

  • Spittaels K., Van den Haute C., Van Dorpe J., Terwel D., Vandezande K., Lasrado R., et al. (2002) Neonatal neuronal over-expression of glycogen synthase kinase-3β reduces brain-size in transgenic mice. 113, 797–808.

  • Stamer K., Vogel R., Thies E., Mandelkow E., and Mandelkow E.-M. (2002) Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J. Cell Biol. 156, 1051–1063.

    Article  PubMed  CAS  Google Scholar 

  • Tesseur I., Van Dorpe J., Spittaels K., Van den Haute C., Moechars D., and Van Leuven F. (2000) Expression of human apolipoprotein E4 in neurons causes hyperphosphorylation of protein tau in the brains of transgenic mice. Am. J. Pathol. 156, 951–964.

    PubMed  CAS  Google Scholar 

  • Tesseur I., Van Dorpe J., Bruynseels K., Bronfman, F., Sciot R., Van Lommel A., et al. (2000) Prominent axonopathy and disruption of axonal transport in transgenic mice expressing human apolipoprotein E4 in neurons of brain and spinal cord. Am. J. Pathol. 157, 1495–1510.

    PubMed  CAS  Google Scholar 

  • Trinczek B., Ebneth A., Mandelkow E.-M., and Mandelkow E. (1999) Tau regulates the attachment/detachment but not the speed of motors in microtubule-dependent transport of single vesicles and organelles. J. Cell Sci. 112, 2355–2367.

    PubMed  CAS  Google Scholar 

  • Van Dorpe J., Smeijers L., Dewachter I., Nuyens D., Spittaels K., Van den Haute C., et al. (2002) Promiment cerebral amyloid angiopathy in transgenic mice overexpressing the London mutant of human APP in neurons. Am. J. Pathol. 157, 1283–1298.

    Google Scholar 

  • Voikar V, Rauvala H, and Ikonen E. (2002) Cognitive deficit and development of motor impairment in a mouse model of Niemann-Pick type C disease. Behav. Brain Res. 132, 1–10.

    Article  PubMed  Google Scholar 

  • Walsh D. M., Tseng B. P., Rydel R. E., Podlisney M. B., and Selkoe D. J. (2000) The oligomerization of amyloid β-protein begins intracellularly in cells derived from human brain. Biochemistry 39, 10,831–10,839.

    Article  CAS  Google Scholar 

  • Wang J. Z., Grundke-Iqbal I., and Iqbal K. (1996) Glycosylation of microtubule-associated protein tau: an abnormal posttranslational modification in Alzheimer’s disease. Nat. Med. 2, 871–875.

    Article  PubMed  CAS  Google Scholar 

  • Williamson R., Scales T., Clark B. R., Gibb G., Reynolds C. H., Kellie S., et al. (2002) Rapid tyrosine phosphorylation of neuronal proteins including tau and focal adhesion kinase in response to amyloid-β peptide exposure: involvement of src family protein kinases. J. Neurosci. 22, 10–20.

    PubMed  CAS  Google Scholar 

  • Yoshida H. and Ihara Y. (1993) Tau in paired helical filaments is functionally distinct from fetal tau: assembly incompetence of paired helical filament tau. J. Neurochem. 61, 1183–1186.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred Van Leuven.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terwel, D., Dewachter, I. & Van Leuven, F. Axonal transport, tau protein, and neurodegeneration in Alzheimer’s disease. Neuromol Med 2, 151–165 (2002). https://doi.org/10.1385/NMM:2:2:151

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/NMM:2:2:151

Index Entries

Navigation