Skip to main content
Log in

Autoimmune modulation of astrocyte-mediated homeostasis

  • Review Article
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Astrocytes are principal mediators of homeostasis in the central nervous system (CNS). They supply neurons and oligodendrocytes with substrates for energy metabolism and clear the extracellular space of excess neurotransmitters. In neuroinflammation, astrocytes have classically been regarded as unimportant since their capacity to present antigen to T cells is limited and has been questioned in vivo. However, it is an evolving concept that autoimmunity in the CNS has a profound impact on astrocytes. In this review, we focus on the alterations in astrocyte functions that occur during an autoimmune attack of the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aasly J., Garseth M., Sonnewald U., Zwart J. A., White L. R., and Unsgard G. (1997) Cerebrospinal fluid lactate and glutamine are reduced in multiple sclerosis. Acta Neurol. Scand. 95, 9–12.

    PubMed  CAS  Google Scholar 

  • Aloisi F., Ria F., and Adorini L. (2000) Regulation of T-cell responses by CNS antigen-presenting cells: different roles for microglia and astrocytes. Immunol. Today 21, 141–147.

    Article  PubMed  CAS  Google Scholar 

  • Aloisi F., Care A., Borsellino G., et al. (1992) Production of hemolymphopoietic cytokines (IL-6, IL-8, colony-stimulating factors) by normal human astrocytes in response to IL-1 beta and tumor necrosis factor-alpha. J. Immunol. 149, 2358–2366.

    PubMed  CAS  Google Scholar 

  • Anderson C. M. and Swanson R. A. (2000) Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32, 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Antony, J. M., van Marle G., Opii W., et al. (2004) Human endogenous retrovirus glycoprotein-mediated induction of redox reactants causes oligodendrocyte death and demyelination. Nat. Neurosci. 7, 1088–1095.

    Article  PubMed  CAS  Google Scholar 

  • Asensio V. C., Maier J., Milner R., et al. (2001) Interferon-independent, human immunodeficiency virus type 1 gp120-mediated induction of CXCL10/IP-10 gene expression by astrocytes in vivo and in vitro. J. Virol. 75, 7067–7077.

    Article  PubMed  CAS  Google Scholar 

  • Barnett M. H. and Prineas J. W. (2004) Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann. Neurol. 55, 458–468.

    Article  PubMed  Google Scholar 

  • Beal M. F. (1992) Role of excitotoxicity in human neurological disease. Curr. Opin. Neurobiol. 2, 657–662.

    Article  PubMed  CAS  Google Scholar 

  • Benjamin A. M. and Quastel J. H. (1975) Metabolism of amino acids and ammonia in rat brain cortex slices in vitro: a possible role of ammonia in brain function. J. Neurochem. 25, 197–206.

    Article  PubMed  CAS  Google Scholar 

  • Benveniste H., Drejer J., Schousboe A., and Diemer N. H. (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J. Neurochem. 43, 1369–1374.

    Article  PubMed  CAS  Google Scholar 

  • Bo L., Dawson T. M., Wesselingh S., et al. (1994) Induction of nitric oxides synthease in demyelinating regions of multiple sclerosis brains. Ann. Neurol. 36, 778–786.

    Article  PubMed  CAS  Google Scholar 

  • Bozzali M., Cercignani M., Sormani M. P., Comi G., and Filippi M. (2002) Quantification of brain gray matter damage in different MS phenotypes by use of diffusion tensor MR imaging. Am. J. Neuroradiol. 23, 985–988.

    PubMed  Google Scholar 

  • Brambilla R., Bracchi-Ricard V., Hu W. H., et al. (2005) Inhibition of astroglial nuclear factor kappaB reduces inflammation and improves functional recovery after spinal cord injury. J. Exp. Med. 202, 145–156.

    Article  PubMed  CAS  Google Scholar 

  • Brand-Schieber E., Werner P., Iacobas D. A., et al. (2005) Connexin43, the major gap junction protein of astrocytes, is down-regulated in inflamated white matter in an animal model of multiple sclerosis. J. Neurosci. Res. 80, 798–808.

    Article  PubMed  CAS  Google Scholar 

  • Brück W. (2005) Inflammatory demyelination is not central to the pathogenesis of multiple sclerosis. J. Neurol. 252 (Suppl. 5), v10-v15.

    Article  PubMed  Google Scholar 

  • Brück W. and Stadelmann C. (2003) Inflammation and degeneration in multiple sclerosis. Neurol. Sci. 24 (Suppl. 5), S265-S267.

    Article  PubMed  Google Scholar 

  • Brune T., Fetzer S., Backus K. H., and Deitmer J. W. (1994) Evidence for electrogenic sodium-bicarbonate cotransport in cultured rat cerebellar astrocytes. Pflügers Arch. 429, 64–71.

    Article  PubMed  CAS  Google Scholar 

  • Busa W. B. (1986) Mechanisms and consequences of pH-mediated cell regulation. Annu. Rev. Physiol. 48, 389–402.

    Article  PubMed  CAS  Google Scholar 

  • Cendes F., Andermann F., Carpenter S., Zatorre R. J., and Cashman N. R. (1995) Temporal lobe epilepsy caused by domoic acid intoxication: evidence for glutamate receptor-mediated excitotixity in humans. Ann. Neurol. 37, 123–126.

    Article  PubMed  CAS  Google Scholar 

  • Chaudhry F. A., Lehre K. P., van Lookeren C. M., Ottersen O. P., Danbolt N. C., and Storm-Mathisen J. (1995) Glutamate transporters in glial plasma membranes: highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry. Neuron 15, 711–720.

    Article  PubMed  CAS  Google Scholar 

  • Chih C. P., Lipton P., Robert E. L., Jr. (2001) Doactive cerebral neurons really use lactate rather than glucose?. Trends Neurosci. 24, 573–578.

    Article  PubMed  CAS  Google Scholar 

  • Choi D. W. (1988) Glutamate neurotoxicity and diseases of the enrvous system. Neuron 1, 623–634.

    Article  PubMed  CAS  Google Scholar 

  • Chung I. Y. and Benveniste E. N. (1990) Tumor necrosis factor-alpha production by astrocytes. Induction by lipopolysaccharide, IFN-gamma, and IL-1 beta. J. Immunol. 144, 2999–3007.

    PubMed  CAS  Google Scholar 

  • Coles A. J., Cox A., Le Page E., et al. (2005) The window of therapeutic opportunity in multiple sclerosis Evidence from monoclonal antibody therapy. J. Neurol. 253, 98–108.

    Article  PubMed  Google Scholar 

  • Croitoru-Lamoury J., Guillemin G. J., Boussin F. D., et al. (2003) Expression of chemokines and their receptors in human and simian astrocytes: evidence for a central role of TNF alpha and IFN gamma in CXCR4 and CCR5 modulation. Glia 41, 354–370.

    Article  PubMed  Google Scholar 

  • Davie C. A., Hawkins C. P., Barker G. J., et al. (1994) Serial proton magnetic resonance spectroscopy in acute multiple sclerosis lesions. Brain 117, 49–58.

    Article  PubMed  Google Scholar 

  • De Stefano N., Guidi L., Stromillo M. L., Bartolozzi M. L., and Federico A. (2003) Imaging neuronal and axonal degeneration in multiple sclerosis. Neurol. Sci. 24 (Suppl. 5), S283-S286.

    Article  PubMed  Google Scholar 

  • De Stafano N., Narayanan S., Francis G. S., et al. (2001) Evidence of axonal damage in the early stages of multiple sclerosis and its relevance to disability. Arch. Neurol. 58, 65–70.

    Article  Google Scholar 

  • Desplat-Jego S., Creidy R., Varriale S., et al. (2005) Anti-TWEAK monoclonal antibodies reduce immune cell infiltration in the central nervous system and severity of experimental autoimmune encephalomyelitis. Clin. Immunol. 117, 15–23.

    Article  PubMed  CAS  Google Scholar 

  • Dirnagl U., Iadecola C., and Moskowitz M.A. (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 22, 391–397.

    Article  PubMed  CAS  Google Scholar 

  • Erecinska M. and Silver I. A. (1990) Metabolism and role of glutamate in mammalian brain. Prog. Neurobiol. 35, 245–296.

    Article  PubMed  CAS  Google Scholar 

  • Feinstein D. L., Galea E., Gavrilyuk V., et al. (2002) Peroxisome proliferatory-activated receptor-gamma agonists prevent experimental autoimmune encephalomyelitis. Ann. Neurol. 51, 694–702.

    Article  PubMed  CAS  Google Scholar 

  • Filippi M. and Rocca M. A. (2005) MRI evidence for multiple sclerosis as a diffuse disease of the central nervous system. J. Neurol. 252(Suppl. 5), v16-v24.

    Article  PubMed  Google Scholar 

  • Fox C. J., Hammerman P. S., and Thompson C. B. (2005) Fuel feeds function: energy metabolism and the T-cell response. Nat. Rev. Immunol. 5, 844–852.

    Article  PubMed  CAS  Google Scholar 

  • Fu I., Matthews P. M., De Stefano N., et al. (1998) Imaging axonal damage of normal-appearing white matter in multiple sclerosis. Brain 121, 103–113.

    Article  PubMed  Google Scholar 

  • Garcia C. K., Goldstein J. L., Pathak R. K., Anderson R. G., and Brown M. S. (1994) Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: implications for the Cori cycle. Cell 76, 865–873.

    Article  PubMed  CAS  Google Scholar 

  • Garcion E., Sindji L., Nataf S., Brachet P., Darcy F., and Montero-Menei C. N. (2003) Treatment of experimental autoimmune encephalomyelitis in rat by 1,25-dihydroxyvitamin D3 leads to early effects within the central nervous system. Acta Neuropathol. (Berl.) 105, 438–448.

    CAS  Google Scholar 

  • Gruetter R., Seaquist E. R., and Ugurbil K. (2001) A mathematical model of compartmentalized neurotransmitter metabolism in the human brain. Am. J. Physiol. Endocrinol. Metab. 281, E100-E112.

    PubMed  CAS  Google Scholar 

  • Halestrap A. P. and Meredith D. (2003) The SLC16 gene family-from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Eur. J. Physiol. 447, 619–628.

    Article  CAS  Google Scholar 

  • Hardin-Pouzet H., Krakowski M., Bourbonniere L., Didier-Bazes M., Tran E., and Owens T. (1997) Glutamatemetabolism is down-regulated in astrocytes during experimental allergic encephalomyelitis. Glia 20, 79–85.

    Article  PubMed  CAS  Google Scholar 

  • Hynd M. R., Scott H. L., and Dodd P. R. (2004) Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem. Int. 45, 583–595.

    Article  PubMed  CAS  Google Scholar 

  • Ikonomidou C. and Turski L. (1995) Excitotoxicity and neurodegenerative diseases. Curr. Opin. Neurol. 8, 487–497.

    Article  PubMed  CAS  Google Scholar 

  • John G. R., Shankar S. L., Shafit-Zagardo B., et al. (2002) Multiple sclerosis: re-expression of a developmental pathway that restricts oligodendrocyte maturation. Nat. Med. 8, 1115–1121.

    Article  PubMed  CAS  Google Scholar 

  • Kaila K. and Ransom B. R. (eds.) (1998) pH and brain function. New York: John Wiley & Sons Inc.

    Google Scholar 

  • Kanai Y. and Hediger M. A. (2004) The glutamate/neutral amino acid transporter family SLC1: molecular, physiological and pharmacological aspects. Pflügers Arch. 447, 469–479.

    Article  PubMed  CAS  Google Scholar 

  • Kojima K., Berger T., Lassmann H., et al. (1994) Experimental autoimmune panencephalitis and uveoretinitis transferred to the Lewis rat by Tlymphocytes specific for the S100 beta molecule, a calcium binding protein of astroglia. J. Exp. Med. 180, 817–829.

    Article  PubMed  CAS  Google Scholar 

  • Korn T., Magnus T., and Jung S. (2005a) Autoantigen specific T cells inhibit glutamate uptake in astrocytes by decreasing expression of astrocytic glutamate transporter GLAST: a mechanism mediated by tumor necrosis factor-alpha. FASEB J. 19, 1878–1880.

    PubMed  CAS  Google Scholar 

  • Korn T., Magnus T., and Jung S. (2005b) Interaction with antigen-specific T cells regulates expression of the lactate transporter MCT1 in primary rat astrocytes: Specific link between immunity and homeostasis. Glia 49, 73–83.

    Article  PubMed  Google Scholar 

  • Lapidot A. and Gopher A. (1994) Cerebral metabolic compartmentation. Estimation of glucose flux via pyruvate carboxylase/pyruvate dehydrogenase by 13C NMR isotopomer analysis of D-[U-13C]glucose metabolites. J. Biol. Chem. 269, 27,198–27,208.

    CAS  Google Scholar 

  • Lehre K. P. and Danbolt N. C. (1998) The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J. Neurosci. 18, 8751–8757.

    PubMed  CAS  Google Scholar 

  • Lennon V. A., Kryzer T. J, Pittock S. J., Verkman A. S., and Hinson S. R. (2005) IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J. Exp. Med. 202, 473–477.

    Article  PubMed  CAS  Google Scholar 

  • Lennon V. A., Wingerchuk D. M., Kryzer T. J., et al. (2004) A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 364, 2106–2112.

    Article  PubMed  CAS  Google Scholar 

  • Li J., Baud O., Vartanian T., Volpe J. J., and Rosenberg P. A. (2005) Peroxy nitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes. Proc. Natl. Acad. Sci. USA 102, 9936–9941.

    Article  PubMed  CAS  Google Scholar 

  • Lipton S. A. (1994) Ca2+, N-methyl-D-aspartate receptors, and AIDS-related neuronal injury. Int. Rev. Neurobiol. 36, 1–27.

    PubMed  CAS  Google Scholar 

  • Longuemare M. C. and Swanson R. A. (1997) Net glutamate release from astrocytes is not induced by extracellular potassium concentrations attainable in brain. J. Neurochem. 69, 879–882.

    Article  PubMed  CAS  Google Scholar 

  • Lucchinetti, C. F., Brück W., Rodriguez M., and Lassmann H. (1996) Distinct patterns of multiple sclerosis pathology indicates heterogeneity on pathogenesis. Brain Pathol. 6, 259–274.

    PubMed  CAS  Google Scholar 

  • Luna-Medina R., Cortes-Canteli M., Alonso M., Santos A., Martinez A., and Perez-Castillo A. (2005) Regulation of inflammatory response in neural cells in vitro by thiadiazolidinones derivatives through peroxisome proliferator-activated receptor gamma activation. J. Biol. Chem. 280, 21,453–21,462.

    Article  CAS  Google Scholar 

  • Mattson M. P. Rychlik B., Chu C., and Christakos S. (1991a) Evidence for calcium-reducing and excitoprotective roles for the calcium-binding protein calbindin-D28k in cultured hippocampal neurons. Neuron 6, 41–51.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P., Rychlik B., You J. S., and Sisken J. E. (1991b) Sensitivity of cultured human embryonic cerebral cortical neurons to excitatory amino acid-induced calcium influx and neurotoxicity. Brain Res. 542, 97–106.

    Article  PubMed  CAS  Google Scholar 

  • Matute C., Alberdi E., Ibarretxe G., and Sanchez-Gomez M. V. (2002) Excitotoxicity in glial cells. Eur. J. Pharmacol. 447, 239–246.

    Article  PubMed  CAS  Google Scholar 

  • McDonald J. W., Althomsons S. P., Hyrc K. L., Cho D. W., and Goldberg M. P. (1998) Oligodendrocytes from forebrain are highly vulnerable to AMPA/kainate receptor-mediated excitotoxicity. Nat. Med. 4, 291–297.

    Article  PubMed  CAS  Google Scholar 

  • Meeuwsen S., Persoon-Deen C., Bsibsi M., Ravid R., and van Noort J. M. (2003) Cytokine, chemokine and growth factor gene profiling of cultured human astrocytes after exposure to proinflammatory stimuli. Glia 43, 243–253.

    Article  PubMed  Google Scholar 

  • Mollace V. and Nistico G. (1995) Release of nitric oxide from astroglial cells: a key mechanism in neuroimmune disorders. Adv. Neuroimmunol. 5, 421–430.

    Article  PubMed  CAS  Google Scholar 

  • Murphy P., Sharp A., Shin J., et al. (2002) Suppressive effects of ansamycins on induciblenitric oxidesynthase expression and the development of experimental autoimmune encephalomyelitis. J. Neurosci. Res. 67, 461–470.

    Article  PubMed  CAS  Google Scholar 

  • O’Connor E. R., Sontheimer H., and Ransom B. R. (1994) Rat hippocampal astrocytes exhibit electrogenic sodium-bicarbonate co-transport J. Neurophysiol. 72, 2580–2589.

    PubMed  CAS  Google Scholar 

  • Omari K. M., John G. R., Sealfon S. C., and Raine C. S. (2005) CXC chemokine receptors on human oligodendrocytes: implications for multiple sclerosis. Brain 128, 1003–1015.

    Article  PubMed  Google Scholar 

  • Pellerin L., Pellegri G., Bittar P. G., et al. (1998) Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. Dev. Neurosci. 20, 291–299.

    Article  PubMed  CAS  Google Scholar 

  • Pines G., Danbolt N. C., Bjoras M., et al. (1992) Cloning and expression of a rat brain L-glutamate transporter. Nature 360, 464–467.

    Article  PubMed  CAS  Google Scholar 

  • Pitt D., Nagelmeier I. E., Wilson H. C., and Raine C. S. (2003) Glutamate uptake by oligodendrocytes: Implications for excitotoxicity in multiple sclerosis. Neurology 61, 1113–1120.

    PubMed  CAS  Google Scholar 

  • Pitt D., Werner P., and Raine C. S. (2000) Glutamate excitotoxicity in a model of multiple sclerosis. Nat. Med. 6, 67–70.

    Article  PubMed  CAS  Google Scholar 

  • Pizzonia J. H., Ransom B. R., and Pappas C. A. (1996) Characterization of Na+/H+ exchange activity in cultured rat hippocampal astrocytes. J. Neurosci. Res. 44, 191–198.

    Article  PubMed  CAS  Google Scholar 

  • Poole R. C. and Halestrap A. P. (1993) Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am. J. Physiol. 264, C761-C782.

    PubMed  CAS  Google Scholar 

  • Ransom B. R. and Fern R. (1997) Does astrocytic glycogen benefit axon function and survival in CNS white matter during glucose deprivation? Glia 21, 134–141.

    Article  PubMed  CAS  Google Scholar 

  • Rothman S. M. and Olney J. W. (1995) Excitotoxicity and the NMDA receptor—still lethal after eight years. Trends Neurosci. 18, 57–58.

    Article  PubMed  CAS  Google Scholar 

  • Rothstein J.D. (1995) Excitotoxicity and neurodegeneration in amyotrophic lateral sclerosis. Clin. Neurosci. 3, 348–359.

    PubMed  Google Scholar 

  • Rothstein J. D., Martin L., Levey A. I., et al. (1994) Localization of neuronal and glial glutamate transporters. Neuron 13, 713–725.

    Article  PubMed  CAS  Google Scholar 

  • Rothstein J. D., Petel S., Regan M. R., et al.(2005) Betalactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433 73–77.

    Article  PubMed  CAS  Google Scholar 

  • Saas P., Boucraut J., Walker P. R., et al. (2000) TWEAK stimulation of astrocytes and the proinflammatory consequences. Glia 32, 102–107.

    Article  PubMed  CAS  Google Scholar 

  • Sarchielli P., Greco L., Floridi A., Floridi A., and Gallai V. (2003) Excitatory amino acids and multiple sclerosis: evidence from cerebrospinal fluid. Arch. Neurol. 60, 1082–1088.

    Article  PubMed  Google Scholar 

  • Schmitt A., Asan E., Puschel B., and Kugler P. (1997) Cellular and regional distribution of the glutamate transporter GLAST in the CNS of rats: nonradioactive in situ hybridization and comparative immunocytochemistry. J. Neurosci. 17, 1–10.

    PubMed  CAS  Google Scholar 

  • Schurr A., Miller J. J., Payne R. S., and Rigor B. M. (1999) An increase in lactate output by brain tissue serves to meet the energy needs of glutamate-activated neurons. J. Neurosci. 19, 34–39.

    PubMed  CAS  Google Scholar 

  • Skias D. D., Kim D. K., Reder A. T., Antel J. P., Lancki D. W., and Fitch F. W. (1987) Susceptibility of astrocytes to class I MHC antigen-specific cytotoxicity. J. Immunol. 138, 3254–3258.

    PubMed  CAS  Google Scholar 

  • Smith K. J. and Lassmann H. (2002) The role of nitric oxide in multiple sclerosis. Lancet Neurol. 1, 232–241.

    Article  PubMed  CAS  Google Scholar 

  • Smith T., Groom A., Zhu B., and Turski L. (2000) Autoimmune encephalomyelitis ameliorated by AMPA antagonists. Nat. Med. 6, 62–66.

    Article  PubMed  CAS  Google Scholar 

  • Sospedra M. and Martin R. (2005) Immunology of multiple sclerosis. Annu. Rev. Immunol. 23, 683–747.

    Article  PubMed  CAS  Google Scholar 

  • Storck T., Schulte, S., Hofmann K., and Stoffel W. (1992) Structure, expression, and functional analysis of a Na(+)-dependent glutamate/aspartate transporter from rat brain. Proc. Natl. Acad. Sci. USA 89, 10,955–10,959.

    Article  CAS  Google Scholar 

  • Strack A., Asensio V. C., Campbell I. L., Schluter D., and Deckert M. (2002) Chemokines are differentially expressed by astrocytes, microglia and inflammatory leukocytes in Toxoplasma encephalitis and critically regulated by interferon-gamma. Acta Neuropathol. (Berl.) 103, 458–468.

    Article  CAS  Google Scholar 

  • Szymocha R., Akaoka H., Brisson C., et al. (2000a) Astrocytic alterations induced by HTLV type 1-infected T lymphocytes: a role for Tax-1 and tumor necrosis factor alpha. AIDS Res. Hum. Retroviruses 16, 1723–1729.

    Article  CAS  Google Scholar 

  • Szymocha R., Akaoka H., Dutuit M., et al. (2000b) Human T-cell lymphotropic virus type 1-infected T lymphocytes impair catabolism and uptake of glutamate by astrocytes via Tax-1 and tumor necrosis factor alpha. J. Virol. 74, 6433–6441.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi J. L., Giuliani F., Power C., Imai Y., and Young V. W. (2003) Interleukin-1 beta promotes oligodendrocyte death through glutamate excitotoxicity. Ann. Neurol. 53, 588–595.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K., Watase, K., Manabe T., et al. (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276, 1699–1702.

    Article  PubMed  CAS  Google Scholar 

  • Trotti D., Rossi D., Gjesdal O., et al. (1996) Peroxynitrite inhibits glutamate transporter subtypes. J. Biol. Chem. 271, 5976–5979.

    Article  PubMed  CAS  Google Scholar 

  • Urenjak J., Williams S. R., Gadian D. G., and Noble M. (1993) Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J. Neurosci. 13, 981–989.

    PubMed  CAS  Google Scholar 

  • van Noort J. M., van Sechel A. C., Bajramovic J. J., et al. (1995) The small heat-shock protein alpha B-crystallin as candidate autoantigen in multiple sclerosis. Nature 375, 798–801.

    Article  PubMed  Google Scholar 

  • Watase K., Hashimoto K., Kano M., et al. (1998) Motor discoordination and increased susceptibility to cerebellar injury in GLAST mutant mice. Eur. J. Neurosci. 10, 976–988.

    Article  PubMed  CAS  Google Scholar 

  • Wender R., Brown A. M., Fern R., Swanson, R. A., Farrell K., and Ransom B. R. (2000) Astrocytic glycogen influences axon function and survival during glucose deprivation in central whitematter. J. Neurosci. 20, 6804–6810.

    PubMed  CAS  Google Scholar 

  • Wiesinger H., Hamprecht B., and Dringen R. (1997) Metabolic pathways for glucose in astrocytes. Glia 21, 22–34.

    Article  PubMed  CAS  Google Scholar 

  • Xu Y., Oz G., LaNoue K. F., et al. (2004) Whole-brain glutamate metabolism evaluated by steady-state kinetics using a double-isotope procedure: effects of gabapentin. J. Neurochem. 90, 1104–1116.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H., Imaizumi T., Fujimoto K., et al. (2001) Synergistic stimulation, by tumor necrosis factor-alpha and interferon-gamma, of fractalkine expression in human astrocytes. Neurosci. Lett. 303, 132–136.

    Article  PubMed  CAS  Google Scholar 

  • Zacco A., Togo J., Spence K., et al (2003) 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors protect cortical neurons from excitotoxicity. J. Neurosci. 23, 11,104–11,111.

    CAS  Google Scholar 

  • Zhou Z. H., Han Y., Wei T., et al. (2001) Regulation of monocyte chemoattractant protein (MCP)-1 transcription by interferon-gamma (IFN-gamma) in human astrocytoma cells: postinduction refractory state of the gene, governed by its upstream elements. FASEB J. 15, 383–392.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Korn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korn, T., Rao, M. & Magnus, T. Autoimmune modulation of astrocyte-mediated homeostasis. Neuromol Med 9, 1–15 (2007). https://doi.org/10.1385/NMM:9:1:1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/NMM:9:1:1

Index Entries

Navigation