Skip to main content
Log in

Presenilins and APP in neuritic and synaptic plasticity

Implications for the pathogenesis of Alzheimer’s disease

  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

A key neuropathological hallmark of Alzheimer’s disease (AD) is the loss of neocortical and hippocampal synapses, which is closely correlated with the degree of memory impairment. Mutations in the genes encoding the amyloid precursor protein (APP) and presenilins are responsible from some cases of early-onset autosomal-dominant AD. This article reviews the current understanding of how alterations in the cellular functions of APP and presenilins may result in the dysfunction and degeneration of synapses in AD. APP mutations result in increased production/aggregation of amyloid β-peptide (Aβ), which induces oxidative stress, resulting in the impairment of synaptic membrane ion, glutamate, and glucose transporters. APP mutations may also compromise the production and/or function of secreted forms of APP that are believed to play important roles in learning and memory processes. Presenilin (PS1) mutations result in a major defect in endoplasmic reticulum (ER) calcium regulation, which may perturb synaptic function in ways that lead to impaired synaptic plasticity and neuronal degeneration. Studies in transgenic mice that express APP and PS1 mutations have provided evidence that the mutations result in altered cellular calcium homeostasis and synaptic plasticity, and impaired learning and memory. This article provides a brief review of the pathophysiological interactions of APP and presenilins with synaptic proteins, and discusses how AD-linked mutations in APP and PS1 may disrupt synaptic processes that contribute to memory formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alves da Costa C., Paitel E., Mattson M. P., Amson R., Telerman A., Ancolio K., and Checler F. (2002) Wild-type and mutated presenilins 2 trigger p53 dependent apoptosis and down-regulate presenilin 1 expression in HEK293 human cells and in murine neurons. Proc. Natl. Acad. Sci. USA 99, 4043–4048.

    Article  PubMed  CAS  Google Scholar 

  • Annaert W. and De Strooper B. (1999) Presenilins: molecular switches between proteolysis and signal transduction. Trends Neurosci. 22, 439–443.

    Article  PubMed  CAS  Google Scholar 

  • Annaert W. G., Esselens C., Baert V., Boeve C., Snellings G., Cupers P., et al. (2001) Interaction with telencephalin and the amyloid precursor protein predicts a ring structure for presenilins. Neuron 32, 579–589.

    Article  PubMed  CAS  Google Scholar 

  • Ashe K. H. (2000) Synaptic structure and function in transgenic APP mice. Ann. NY Acad. Sci. 924, 39–41.

    Article  PubMed  CAS  Google Scholar 

  • Baki L., Marambaud P., Efthimiopoulos S., Georgakopoulos A., Wen P., Cui W., et al. (2001) Presenilin-1 binds cytoplasmic epithelial cadherin, inhibits cadherin/p120 association, and regulates stability and function of the cadherin/catenin adhesion complex. Proc. Natl. Acad. Sci. USA 98, 2381–2386.

    Article  PubMed  CAS  Google Scholar 

  • Barger S. W., Fiscus R. R., Ruth P., Hofmann F., and Mattson M. P. (1995) Role of cyclic GMP in the regulation of neuronal calcium and survival by secreted forms of beta-amyloid precursor. J. Neurochem. 64, 2087–2096.

    Article  PubMed  CAS  Google Scholar 

  • Barger S. W. and Mattson M. P. (1995) The secreted form of the Alzheimer’s beta-amyloid precursor protein stimulates a membrane-associated guanylate cyclase. Biochem. J. 311, 45–47.

    PubMed  CAS  Google Scholar 

  • Barger S. W. and Mattson M. P. (1996) Induction of neuroprotective kappa B-dependent transcription by secreted forms of the Alzheimer’s beta-amyloid precursor. Mol. Brain Res. 40, 116–126.

    Article  PubMed  CAS  Google Scholar 

  • Barrow P. A., Empson R. M., Gladwell S. J., Anderson C. M., Killick R., Yu X., et al. (2000) Functional phenotype in transgenic mice expressing mutant human presenilin-1. Neurobiol. Dis. 7, 119–126.

    Article  PubMed  CAS  Google Scholar 

  • Begley J. G., Duan W., Chan S., Duff K., and Mattson M. P. (1999) Altered calcium homeostasis and mitochondrial dysfunction in cortical synaptic compartments of presenilin-1 mutant mice. J. Neurochem. 72, 1030–1039.

    Article  PubMed  CAS  Google Scholar 

  • Beher D., Hesse L., Masters C. L., and Multhaup G. (1996) Regulation of amyloid protein precursor (APP) binding to collagen and mapping of the binding sites on APP and collagen type I. J. Biol. Chem. 271, 1613–1620.

    Article  PubMed  CAS  Google Scholar 

  • Behrens J., Jerchow B. A., Wurtele M., Grimm J., Asbrand C., Wirtz R., et al. (1998) Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science 280, 596–599.

    Article  PubMed  CAS  Google Scholar 

  • Behrens J., von Kries J. P., Kuhl M., Bruhn L., Wedlich D., Grosschedl R., et al. (1996) Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382, 638–642.

    Article  PubMed  CAS  Google Scholar 

  • Berezovska O., Frosch M., McLean P., Knowles R., Koo E., Kang D., et al. (1999) The Alzheimer-related gene presenilin 1 facilitates notch 1 in primary mammalian neurons. Mol. Brain Res. 69, 273–280.

    Article  PubMed  CAS  Google Scholar 

  • Blanc E. M., Kelly J. F., Mark R. J., and Mattson M. P. (1997) 4-hydroxynonenal, an aldehydic product of lipid peroxidation, impairs signal transduction associated with muscarinic acetylcholine and metabotropic glutamate receptors: possible action on Gαq/11. J. Neurochem. 69, 570–580.

    Article  PubMed  CAS  Google Scholar 

  • Borg J. P., Straight S. W., Kaech S. M., de Taddeo-Borg M., Kroon D. E., Karnak D., et al. (1998) Identification of an evolutionarily conserved heterotrimeric protein complex involved in protein targeting. J. Biol. Chem. 273, 31,633–31,636.

    CAS  Google Scholar 

  • Bozdagi O., Shan W., Tanaka H., Benson D. L., and Huntley G. W. (2000) Increasing numbers of synaptic puncta during late-phase LTP: N-cadherin is synthesized, recruited to synaptic sites, and required for potentiation. Neuron 28, 245–259.

    Article  PubMed  CAS  Google Scholar 

  • Bruce-Keller A. J., Li Y. J., Lovell M. A., Kraemer P. J., Gary D. S., Brown R. R., et al. (1998) 4-Hydroxynonenal, a product of lipid peroxidation, damages cholinergic neurons and impairs visuospatial memory in rats. J. Neuropathol. Exp. Neurol. 57, 257–267.

    PubMed  CAS  Google Scholar 

  • Bruce-Keller A. J., Umberger G., McFall R., and Mattson M. P. (1999) Food restriction reduces brain damage and improves behavioral outcome following excitotoxic and metabolic insults. Ann. Neurol. 45, 8–15.

    Article  PubMed  CAS  Google Scholar 

  • Buxbaum J. D., Choi E. K., Luo Y., Lilliehook C., Crowley A. C., Merriam D. E., et al. (1998b) Calsenilin: a calcium-binding protein that interacts with the presenilins and regulates the levels of a presenilin fragment. Nat. Med. 4, 1177–1181.

    Article  PubMed  CAS  Google Scholar 

  • Cao X. and Sudhof T. C. (2001) A transcriptionally active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 293, 115–120.

    Article  PubMed  CAS  Google Scholar 

  • Cataldo A. M., Peterhoff C. M., Troncoso J. C., Gomez-Isla T., Hyman B. T., and Nixon R. A. (2000) Endocytic pathway abnormalities precede amyloid beta deposition in sporadic Alzheimer’s disease and Down syndrome: differential effects of APOE genotype and presenilin mutations. Am. J. Pathol. 157, 277–286.

    PubMed  CAS  Google Scholar 

  • Chan S. L. and Mattson M. P. (1999) Caspase and calpain substrates: roles in synaptic plasticity and cell death. J. Neurosci. Res. 58, 167–190.

    Article  PubMed  CAS  Google Scholar 

  • Chan S. L., Mayne M., Holden C. P., Geiger J. D., and Mattson M. P. (2000) Presenilin-1 mutations increase levels of ryanodine receptors and calcium release in PC12 cells and cortical neurons. J. Biol. Chem. 275, 18,195–18,200.

    CAS  Google Scholar 

  • Chapman P. F., White G. L., Jones M. W., Cooper-Blacketer D., Marshall V. J., Irizarry M., et al. (1999) Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nat. Neurosci. 2, 271–276.

    Article  PubMed  CAS  Google Scholar 

  • Chen Q. S., Kagan B. L., Hirakura Y., and Xie C. W. (2000) Impairment of hippocampal long-term potentiation by Alzheimer amyloid β beta-peptide. J. Neurosci. Res. 60, 65–72.

    Article  PubMed  CAS  Google Scholar 

  • Chen Q. S., Wei W. Z., Shimahara T., and Xie C. W. (2002) Alzheimer amyloid beta-peptide inhibits the late phase of long-term potentiation through calcineurin-dependent mechanisms in the hippocampal dentate gyrus. Neurobiol. Learn. Mem. 77, 354–371.

    Article  PubMed  CAS  Google Scholar 

  • Cheng G., Yu Z., Zhou D., and Mattson M. P. (2002) Phosphatidylinositol-3-kinase—Akt and p42/p44 mitogen-activated protein kinases mediate neurotrophic and excitoprotective actions of a secreted form of amyloid precursor protein. Exp. Neurol. 175, 407–414.

    Article  PubMed  CAS  Google Scholar 

  • Cook D. G., Sung J. C., Golde T. E., Felsenstein K. M., Wojczyk B. S., Tanzi R. E., et al. (1996) Expression and analysis of presenilin 1 in a human neuronal system: localization in cell bodies and dendrites. Proc. Natl. Acad. Sci. USA 93, 9223–9228.

    Article  PubMed  CAS  Google Scholar 

  • Cotman C. W., Hailer N. P., Pfister K. K., Soltesz I., and Schachner M. (1998) Cell adhesion molecules in neural plasticity and pathology: similar mechanisms, distinct organizations? Prog. Neurobiol. 55, 659–669.

    Article  PubMed  CAS  Google Scholar 

  • Coulson E. J., Barrett G. L., Storey E., Bartlett P. F., Beyreuther K., and Masters C. L. (1997) Down-regulation of the amyloid protein precursor of Alzheimer’s disease by antisense oligonucleotides reduces neuronal adhesion to specific substrata. Brain Res. 770, 72–80.

    Article  PubMed  CAS  Google Scholar 

  • Cullen W. K., Wu J., Anwyl R., and Rowan M. (1996) Beta-Amyloid produces a delayed NMDA receptor-dependent reduction in synaptic transmission in rat hippocampus. Neuroreport 8, 87–92.

    Article  PubMed  CAS  Google Scholar 

  • Cullen W. K., Suh Y. H., Anwyl R., and Rowan M. J. (1997) Block of LTP in rat hippocampus in vivo by Beta-amyloid precursor protein fragments. Neuroreport 8, 3213–3217.

    Article  PubMed  CAS  Google Scholar 

  • Davidsson P., Bogdanovic N., Lannfelt L., and Blennow K. (2001) Reduced expression of amyloid precursor protein, presenilin-1 and rab3a in cortical brain regions in Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 12, 243–250.

    Article  PubMed  CAS  Google Scholar 

  • Dawson G. R., Seabrook G. R., Zheng H., Smith D. W., Graham S., O’Dowd G., et al. (1999) Age-related cognitive deficits, impaired long-term potentiation and reduction in synaptic marker density in mice lacking the beta-amyloid precursor protein. Neuroscience 90, 1–13.

    Article  PubMed  CAS  Google Scholar 

  • DeKosky S. T., Scheff S. W., and Styren S. D. (1996) Structural correlates of cognition in dementia: quantification and assessment of synapse change. Neurodegeneration 5, 417–421.

    Article  PubMed  CAS  Google Scholar 

  • Dewachter I., Reverse D., Caluwaerts N., Ris L., Kuiperi C., Van den Haute C., et al. (2002) Neuronal deficiency of presenilin 1 inhibits amyloid plaque formation and corrects hippocampal long-term potentiation but not a cognitive defect of amyloid precursor protein [V717I] transgenic mice. J. Neurosci. 22, 3445–3453.

    PubMed  CAS  Google Scholar 

  • Dowjat W. K., Wisniewski H., and Wisniewski T. (2001) Alzheimer’s disease presenilin-1 expression modulates the assembly of neurofilaments. Neuroscience 103, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Doyle E., Bruce M. T., Breen K. C., Smith D. C., Anderton B., and Regan C. M. (1990) Intraventricular infusions of antibodies to amyloid-beta-protein precursor impair the acquisition of a passive avoidance response in the rat. Neurosci. Lett. 115, 97–102.

    Article  PubMed  CAS  Google Scholar 

  • Dumanchin C., Czech C., Campion D., Cuif M. H., Poyot T., Martin C., et al. (1999) Presenilins interact with Rabll, a small GTPase involved in the regulation of vesicular transport. Hum. Mol. Genet. 8, 1263–1269.

    Article  PubMed  CAS  Google Scholar 

  • Efthimiopoulos S., Floor E., Georgakopoulos A., Shioi J., Cui W., Yasothornsrikul S., et al. (1998) Enrichment of presenilin 1 peptides in neuronal large dense-core and somatodendritic clathrin-coated vesicles. J. Neurochem. 71, 2365–2372.

    Article  PubMed  CAS  Google Scholar 

  • Fagni L., Chavis P., Ango F., and Bockaert J. (2000) Complex interactions between mGluRs, intracellular Ca2+ stores and ion channels in neurons. Trends Neurosci. 23, 80–88.

    Article  PubMed  CAS  Google Scholar 

  • Fakla I., Kovacs I., Yamaguchi H., Geula C., and Kasa P. (2000) Expressions of amyloid precursor protein, synaptophysin and presenilin-1 in the different areas of the developing cerebellum of rat. Neurochem. Int. 36, 143–151.

    Article  PubMed  CAS  Google Scholar 

  • Farber S. A., Nitsch R. M., Schulz J. G., and Wurtman R. J. (1995) Regulated secretion of beta-amyloid precursor protein in rat brain. J. Neurosci. 15, 7442–7451.

    PubMed  CAS  Google Scholar 

  • Fiore F., Zambrano N., Minopoli G., Donini V., Duilio A., and Russo T. (1995) The regions of the Fe65 protein homologous to the phosphotyrosine interaction/phosphotyrosine binding domain of Shc bind the intracellular domain of the Alzheimer’s amyloid precursor protein. J. Biol. Chem. 270, 30,853–30,856.

    CAS  Google Scholar 

  • Fitzjohn S. M., Morton R. A., Kuenzi F., Davies C. H., Seabrook G. R., and Collingridge G. L. (2000) Similar levels of long-term potentiation in amyloid precursor protein-null and wild-type mice in the CA1 region of picrotoxin treated slices. Neurosci. Lett. 288, 9–12.

    Article  PubMed  CAS  Google Scholar 

  • Fitzjohn S. M., Morton R. A., Kuenzi F., Rosahl T. W., Shearman M., Lewis H., et al. (2001) Age-related impairment of synaptic transmission but normal long-term potentiation in transgenic mice that over-express the human APP695SWE mutant form of amyloid precursor protein. J. Neurosci. 21, 4691–4698.

    PubMed  CAS  Google Scholar 

  • Franklin J. L., Berechid B. E., Cutting F. B., Presente A., Chambers C. B., Foltz D. R., et al. (1999) Autonomous and non-autonomous regulation of mammalian neurite development by Notch1 and Delta1. Curr. Biol. 9, 1448–1457.

    Article  PubMed  CAS  Google Scholar 

  • Freir D., Holscher C., and Herron C. E. (2001) Blockade of long-term potentiation by Beta-amyloid peptides in the CA1 region of the rat hippocampus in vivo. J. Neurophysiol. 85, 708–713.

    PubMed  CAS  Google Scholar 

  • Furukawa K., Barger S. W., Blalock E. M., and Mattson M. P. (1996a) Activation of K+ channels and suppression of neuronal activity by secreted beta-amyloid-precursor protein. Nature 379, 74–78.

    Article  PubMed  CAS  Google Scholar 

  • Furukawa K., Guo Q., Schellenberg G. D., and Mattson M. P. (1998) Presenilin-1 mutation alters NGF-induced neurite outgrowth, calcium homeostasis, and transcription factor (AP-1) activation in PC12 cells. J. Neurosci. Res. 52, 618–624.

    Article  PubMed  CAS  Google Scholar 

  • Furukawa K., Sopher B. L., Rydel R. E., Begley J. G., Pham D. G., Martin G. M., et al. (1996b) Increased activity-regulating and neuroprotective efficacy of alpha-secretase-derived secreted amyloid precursor protein conferred by a C-terminal heparin-binding domain. J. Neurochem. 67, 1882–1896.

    Article  PubMed  CAS  Google Scholar 

  • Gantier R., Gilbert D., Dumanchin C., Campion D., Davoust D., Toma F., et al. (2000) The pathogenic L392V mutation of presenilin 1 decreases the affinity to glycogen synthase kinase-3 beta. Neurosci. Lett. 283, 217–220.

    Article  PubMed  CAS  Google Scholar 

  • Gao, Y. and Pimplikar S. W. (2001) The gamma-secretase-cleaved C-terminal fragment of amyloid precursor protein mediates signaling to the nucleus. Proc. Natl. Acad. Sci. USA 98, 14,979–14,984.

    CAS  Google Scholar 

  • Geddes J. W., Anderson K. J., and Cotman C. W. (1986) Senile plaques as aberrant sprout-stimulating structures. Exp. Neurol. 94, 767–776.

    Article  PubMed  CAS  Google Scholar 

  • Georgakopoulos A., Marambaud P., Efthimiopoulos S., Shioi J., Cui W., Li H. C., et al. (1999) Presenilin-1 forms complexes with the cadherin/catenin cell-cell adhesion system and is recruited to intercellular and synaptic contacts. Mol. Cell 4, 893–902.

    Article  PubMed  CAS  Google Scholar 

  • Gerdeman G. L., Ronesi J., and Lovinger D. M. (2002) Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nat. Neurosci. 5, 446–451.

    PubMed  CAS  Google Scholar 

  • Gertler F. B., Niebuhr K., Reinhard M., Wehland J., and Soriano P. (1996) Mena, a relative of VASP and Drosophila Enabled, is implicated in the control of microfilament dynamics. Cell 87, 227–239.

    Article  PubMed  CAS  Google Scholar 

  • Giacchino J., Criado J. R., Games D., and Henriksen S. (2000) In vivo synaptic transmission in young and aged amyloid precursor protein transgenic mice. Brain Res. 876, 185–190.

    Article  PubMed  CAS  Google Scholar 

  • Glazner G. W., Chan S. L., Lu C., and Mattson M. P. (2000) Caspase-mediated degradation of AMPA receptor subunits: a mechanism for preventing excitotoxic necrosis and ensuring apoptosis. J. Neurosci. 20, 3641–3649.

    PubMed  CAS  Google Scholar 

  • Gotz J. (2001) Tau and transgenic animal models. Brain Res. Rev. 35, 266–286.

    Article  PubMed  CAS  Google Scholar 

  • Greenwald I. (1998) LIN-12/Notch signaling: lessons from worms and flies. Genes Dev. 12, 1751–1762.

    PubMed  CAS  Google Scholar 

  • Gunawardena S. and Goldstein L. S. (2001) Disruption of axonal transport and neuronal viability by amyloid precursor protein mutations in Drosophila. Neuron 32, 389–401.

    Article  PubMed  CAS  Google Scholar 

  • Guo Q., Fu W., Sopher B. L., Miller M. W., Ware C. B., Martin G. M., et al. (1999a) Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin-1 mutant knock-in mice. Nat. Med. 5, 101–106.

    Article  PubMed  CAS  Google Scholar 

  • Guo Q., Furukawa K., Sopher B. L., Pham D. G., Xie J., Robinson N., Martin G. M., et al. (1996) Alzheimer’s PS-1 mutation perturbs calcium homeostasis and sensitizes PC12 cells to death induced by amyloid beta-peptide. Neuroreport 8, 379–383.

    Article  PubMed  CAS  Google Scholar 

  • Guo Q., Robinson N., and Mattson M. P. (1998) Secreted beta-amyloid precursor protein counteracts the proapoptotic action of mutant presenilin-1 by activation of NF-kappaB and stabilization of calcium homeostasis. J. Biol. Chem. 273, 12,341–12,351.

    CAS  Google Scholar 

  • Guo Q., Sebastian L., Sopher B. L., Miller M. W., Glazner G. W, Ware C. B., et al. (1999c) Neurotrophic factors [activity-dependent neurotrophic factor (ADNF) and basic fibroblast growth factor (bFGF)] interrupt excitotoxic neurodegenerative cascades promoted by a PS1 mutation. Proc. Natl. Acad. Sci. USA 96, 4125–4130.

    Article  PubMed  CAS  Google Scholar 

  • Guo Q., Sebastian L., Sopher B. L., Miller M. W., Ware C. B., Martin G. M., et al. (1999c) Increased vulnerability of hippocampal neurons from presenilin-1 mutant knock-in mice to amyloid beta-peptide toxicity: central roles of superoxide production and caspase activation. J. Neurochem. 72, 1019–1029.

    Article  PubMed  CAS  Google Scholar 

  • Guo Q., Sopher B. L., Furukawa K., Pham D. G., Robinson N., Martin G. M., et al. (1997) Alzheimer’s presenilin mutation sensitizes neural cells to apoptosis induced by trophic factor withdrawal and amyloid beta-peptide: involvement of calcium and oxyradicals. J. Neurosci. 17, 4212–4222.

    PubMed  CAS  Google Scholar 

  • Guo Y., Zhang S. X., Sokol N., Cooley L., and Boulianne G. L. (2000) Physical and genetic interaction of filamin with presenilin in Drosophila. J. Cell Sci. 113, 3499–3508.

    PubMed  CAS  Google Scholar 

  • Guo Z. H. and Mattson M. P. (2000) Neurotrophic factors protect cortical synaptic terminals against amyloid and oxidative stress-induced impairment of glucose transport, glutamate transport and mitochondrial function. Cereb. Cortex 10, 50–57.

    Article  PubMed  CAS  Google Scholar 

  • Hart M. J., de los Santos R., Albert I. N., Rubinfeld B., and Polakis P. (1998). Downregulation of beta-catenin by human Axin and its association with the APC tumor suppressor, beta-catenin and GSK3 beta. Curr. Biol. 8, 573–581.

    Article  PubMed  CAS  Google Scholar 

  • Haughey N. J., Liu D., Nath A., Borchard A. C., and Mattson M. P. (2002a) Disruption of neurogenesis in the subventricular zone of adult mice, and in human cortical neuronal precursor cells in culture, by amyloid beta-peptide: implications for the pathogenesis of Alzheimer’s disease. Neuromolecular Med. 1, 125–135.

    Article  PubMed  CAS  Google Scholar 

  • Haughey N. J., Nath A., Liu D., Chan S. L., Borchard A. C., Rao M. S., et al. (2002b) Disruption of neurogenesis by amyloid beta-peptide and perturbed calcium homeostasis in models of Alzheimer’s disease. J. Neurosci. Submitted.

  • Heber S., Herms J., Gajic V., Hainfellner J., Aguzzi A., Rulicke T., et al. (2000) Mice with combined gene knock-outs reveal essential and partially redundant functions of amyloid precursor protein family members. J. Neurosci. 20, 7951–7963.

    PubMed  CAS  Google Scholar 

  • Herreman A., Serneels L., Annaert W., Collen D., Schoonjans L., and De Strooper B. (2000) Total inactivation of gamma-secretase activity in presenilin-deficient embryonic stem cells. Nat. Cell Biol. 2, 461–462.

    Article  PubMed  CAS  Google Scholar 

  • Hsia A. Y., Masliah E., McConlogue L., Yu G. Q., Tatsuno G., Hu K., et al. (1999) Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse model. Proc. Natl. Acad. Sci. USA 96, 3228–3233.

    Article  PubMed  CAS  Google Scholar 

  • Huber G., Martin J. R., Loffler J., and Moreau J. L. (1993) Involvement of amyloid precursor protein in memory formation in the rat: an indirect antibody approach. Brain Res. 603, 348–352.

    Article  PubMed  CAS  Google Scholar 

  • Huber O., Korn R., McLaughlin J., Ohsugi M., Herrmann B. G., and Kemler R. (1996) Nuclear localization of beta-catenin by interaction with transcription factor LEF-1. Mech. Dev. 59, 3–10.

    Article  PubMed  CAS  Google Scholar 

  • Ishida A., Furukawa K., and Mattson M. P. (1997) Secreted form of β-amyloid precursor protein shifts the frequency dependency for induction of LTD, and enhances LTP in hippocampal slices. Neuroreport 8, 2133–2137.

    Article  PubMed  CAS  Google Scholar 

  • Itoh A., Akaike T., Sokabe M., Nitta A., Iida R., Olariu A., et al. (1999) Impairments of long-term potentiation in hippocampal slices of β-amyloid-infused rats. Eur. J. Pharmacol. 382, 167–175.

    Article  PubMed  CAS  Google Scholar 

  • Jensen P. H. and Gai W. P. (2001) Alpha-synuclein. Axonal transport, ligand interaction and neurodegeneration. Adv. Exp. Med. Biol. 487, 129–134.

    PubMed  CAS  Google Scholar 

  • Jin Y. (2002) Synaptogenesis: insights from worm and fly. Curr. Opin. Neurobiol. 12, 71–79.

    Article  PubMed  CAS  Google Scholar 

  • Johnsingh A. A., Johnston J. M., Merz G., Xu J., Kotula L., Jacobsen J. S., et al. (2000) Altered binding of mutated presenilin with cytoskeleton-interacting proteins. FEBS Lett. 465, 53–58.

    Article  PubMed  CAS  Google Scholar 

  • Justice N. J. and Jan Y. N. (2002) Variations on the Notch pathway in neural development. Curr. Opin. Neurobiol. 12, 64–70.

    Article  PubMed  CAS  Google Scholar 

  • Kamal A., Almenar-Queralt A., LeBlanc J. F., Roberts E. A., and Goldstein L. S. (2001) Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP. Nature 414, 643–648.

    Article  PubMed  CAS  Google Scholar 

  • Kang D. E., Soriano S., Frosch M. P., Collins T., Naruse S., Sisodia S. S., et al. (1999) Presenilin 1 facilitates the constitutive turnover of beta catenin: differential activity of Alzheimer’s disease-linked PS1 mutants in the beta-catenin signaling pathway. J. Neurosci. 19, 4229–4237.

    PubMed  CAS  Google Scholar 

  • Kawamura Y., Kikuchi A., Takada R., Takada S., Sudoh S., Shibamoto S., et al. (2001) Inhibitory effect of a presenilin 1 mutation on the Wnt signalling pathway by enhancement of beta-catenin phosphorylation. Eur. J. Biochem. 268, 3036–3041.

    Article  PubMed  CAS  Google Scholar 

  • Keller J. N., Pang Z., Geddes J. W., Begley J. G., Germeyer A., Waeg G., et al. (1997) Impairment of glucose and glutamate transport and induction of mitochondrial oxidative stress and dysfunction in synaptosomes by amyloid β-peptide: role of the lipid peroxidation product 4-hydroxynonenal. J. Neurochem. 69, 273–284.

    Article  PubMed  CAS  Google Scholar 

  • Kelly J. F., Furukawa K., Barger S. W., Rengen M. R., Mark R. J., Blanc E. M., Roth G. S., and Mattson M. P. (1996) Amyloid beta-peptide disrupts carbachol-induced muscarinic cholinergic signal transduction in cortical neurons. Proc. Natl. Acad. Sci. USA 93, 6753–6758.

    Article  PubMed  CAS  Google Scholar 

  • Kempermann G. and Gage F. H. (1999) Experience-dependent regulation of adult hippocampal neurogenesis: effects of long-term stimulation and stimulus withdrawal. Hippocampus 9, 321–332.

    Article  PubMed  CAS  Google Scholar 

  • Kesavapany S., Lau K. F., McLoughlin D. M., Brownlees J., Ackerley S., Leigh P. N., et al. (2001) p35/cdk5 binds and phosphorylates beta-catenin and regulates beta-catenin/presenilin-1 interaction. Eur. J. Neurosci. 13, 241–247.

    Article  PubMed  CAS  Google Scholar 

  • Kibbey M. C., Jucker M., Weeks B. S., Neve R. L., Van Nostrand W. E., and Kleinman H. K. (1993) beta-amyloid precursor protein binds to the neurite-promoting IKVAV site of laminin. Proc. Natl. Acad. Sci. USA 90, 10,150–10,153.

    Article  CAS  Google Scholar 

  • Kim S. H., Leem J. Y., Lah J. J., Slunt H. H., Levey A. I., Thinakaran G., et al. (2001) Multiple effects of aspartate mutant presenilin 1 on the processing and trafficking of amyloid precursor protein. J. Biol. Chem. 276, 43,343–43,350.

    CAS  Google Scholar 

  • Kim T. W., Wu K., Xu J. L., McAuliffe G., Tanzi R. E., Wasco W., et al. (1995) Selective localization of amyloid precursor-like protein 1 in the cerebral cortex postsynaptic density. Mol. Brain Res. 32, 36–44.

    Article  PubMed  CAS  Google Scholar 

  • Kirazov E., Kirazov L., Bigl V., and Schliebs R. (2001) Ontogenetic changes in protein level of amyloid precursor protein (APP) in growth cones and synaptosomes from rat brain and prenatal expression pattern of APP mRNA isoforms in developing rat embryo. Int. J. Dev. Neurosci. 19, 287–296.

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa M., Hatakeyama S., Shirane M., Matsumoto M., Ishida N., Hattori K., et al. (1999) An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of beta-catenin. EMBO J. 18, 2401–2410.

    Article  PubMed  CAS  Google Scholar 

  • Klintsova A. Y. and Greenough W. T. (1999) Synaptic plasticity in cortical systems. Curr. Opin. Neurobiol. 9, 203–208.

    Article  PubMed  CAS  Google Scholar 

  • Koistinaho M., Ort M., Cimadevilla J. M., Vondrous R., Cordell B., Koistinaho J., et al. (2001) Specific spatial learning deficits become severe with age in beta-amyloid precursor protein transgenic mice that harbor diffuse beta-amyloid deposits but do not form plaques. Proc. Natl. Acad. Sci. USA 98, 14,675–14,680.

    Article  CAS  Google Scholar 

  • Koo E.H., Sisodia S. S., Archer D. R., Martin L. J., Weidemann A., Beyreuther K., et al. (1990) Precursor of amyloid protein in Alzheimer disease undergoes fast anterograde axonal transport. Proc. Natl. Acad. Sci. USA 87, 1561–1565.

    Article  PubMed  CAS  Google Scholar 

  • Korkotian E. and Segal M. (1998) Fast confocal imaging of calcium released from stores in dendritic spines. Eur. J. Neurosci. 10, 2076–2084.

    Article  PubMed  CAS  Google Scholar 

  • Kostyszyn B., Cowburn R. F., Seiger A., Kjaeldgaard A., and Sundstrom E. (2001) Expression of presenilin-1 and Notch-1 receptor in human embryonic CNS. Neuroscience 103, 885–898.

    Article  PubMed  CAS  Google Scholar 

  • Lambert M. P., Barlow A. K., Chromy B. A., Edwards C., Freed R., Liosatos M., et al. (1998) Diffusible, nonfibrillar ligands derived from Abeta1–42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA 95, 6448–6453.

    Article  PubMed  CAS  Google Scholar 

  • Lantz V. A. and Miller K. G. (1998) A class VI unconventional myosin is associated with a homologue of a microtubule-binding protein, cytoplasmic linker protein-170, in neurons and at the posterior pole of Drosophila embryos. J. Cell Biol. 140, 897–910.

    Article  PubMed  CAS  Google Scholar 

  • Larson J., Lynch G., Games D., and Seubert P. (1999) Alterations in synaptic transmission and long-term potentiation in hippocampal slices from young and aged PDAPP mice. Brain Res. 840, 23–35.

    Article  PubMed  CAS  Google Scholar 

  • Lau K. F., McLoughlin D. M., Standen C., and Miller C. C. (2000) X11 alpha and x11 beta interact with presenilin-1 via their PDZ domains. Mol. Cell. Neurosci. 16, 557–565.

    Article  PubMed  CAS  Google Scholar 

  • LeBlanc A. C., Kovacs D. M., Chen H. Y., Villare F., Tykocinski M., Autilio-Gambetti L., et al. (1992) Role of amyloid precursor protein (APP): study with antisense transfection of human neuroblastoma cells. J. Neurosci. Res. 31, 635–645.

    Article  PubMed  CAS  Google Scholar 

  • Lee H. J., Jung K. M., Huang Y. Z., Bennett L. B., Lee J. S., Mei L., et al. (2002) Presenilin-dependent gamma-secretase-like intramembrane cleavage of ErbB4. J. Biol. Chem. 277, 6318–6323.

    Article  PubMed  CAS  Google Scholar 

  • Lee J., Seroogy K. B., and Mattson M. P. (2002) Dietary restriction enhances neurotrophin expression and neurogenesis in the hippocampus of adult mice. J. Neurochem. 80, 539–547.

    Article  PubMed  CAS  Google Scholar 

  • Lee M. S., Kwon Y. T., Li M., Peng J., Friedlander R. M., and Tsai L. H. (2000) Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405, 360–364.

    Article  PubMed  CAS  Google Scholar 

  • Leem J. Y., Vijayan S., Han P., Cai D., Machura M., Lopes K. O., et al. (2002) Presenilin 1 is required for maturation and cell surface accumulation of nicastrin. J. Biol. Chem. 277, 19,236–19,240.

    Article  CAS  Google Scholar 

  • Leissring M. A., Akbari Y., Fanger C. M., Cahalan M. D., Mattson M. P., and LaFerla F. M. (2000) Capacitative calcium entry deficits and elevated luminal calcium content in mutant presenilin-1 knockin mice. J. Cell Biol. 149, 793–798.

    Article  PubMed  CAS  Google Scholar 

  • Leissring M. A., Murphy M. P., Mead T. R., Akbari Y., Sugarman M. C., Jannatipour M., et al. (2002) A physiologic signaling role for the gamma-secretase-derived intracellular fragment of APP. Proc. Natl. Acad. Sci. USA 99, 4697–4702.

    Article  PubMed  CAS  Google Scholar 

  • Leroy K. and Brion J. P. (1999) Developmental expression and localization of glycogen synthase kinase-3beta in rat brain. J. Chem. Neuroanat. 16, 279–293.

    Article  PubMed  CAS  Google Scholar 

  • Levesque G., Yu G., Nishimura M., Zhang D. M., Levesque L., et al. (1999) Presenilins interact with armadillo proteins including neural-specific plakophilin-related protein and beta-catenin. J. Neurochem. 72, 999–1008.

    Article  PubMed  CAS  Google Scholar 

  • Lewis J., Dickson D. W., Lin W. L., Chisholm L., Corral A., Jones G., et al. (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293, 1487–1491.

    Article  PubMed  CAS  Google Scholar 

  • Lilliehook C., Chan S., Choi E. K., Zaidi N. F., Wasco W., Mattson M. P., et al. (2002) Calsenilin enhances apoptosis by altering endoplasmic reticulum calcium signaling. Mol. Cell. Neurosci. 19, 552–559.

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo A., Yuan M., Zhang Z., Paganetti P. A., Sturchler-Pierrat C., Staufenbiel M., et al. (2000) Amyloid beta interacts with the amyloid precursor protein: a potential toxic mechanism in Alzheimer’s disease. Nat. Neurosci. 3, 460–464.

    Article  PubMed  CAS  Google Scholar 

  • Lucas J. J., Hernandez F., Gomez-Ramos P., Moran M. A., Hen R., and Avila J. (2001) Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. EMBO J. 20, 27–39.

    Article  PubMed  CAS  Google Scholar 

  • Marambaud P., Shioi J., Serban G., Georgakopoulos A., Sarner S., Nagy V., et al. (2002) A presenilin-1/gamma-secretase cleavage releases the E-cadherin intracellular domain and regulates disassembly of adherens junctions. EMBO J. 21, 1948–1956.

    Article  PubMed  CAS  Google Scholar 

  • Mark R. J., Hensley K., Butterfield D. A., and Mattson M. P. (1995) Amyloid beta-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death. J. Neurosci. 15, 6239–6249.

    PubMed  CAS  Google Scholar 

  • Mark R. J., Lovell M. A., Markesbery W. R., Uchida K., and Mattson M. P. (1997a) A role for 4-hydroxynonenal in disruption of ion homeostasis and neuronal death induced by amyloid β-peptide. J. Neurochem. 68, 255–264.

    Article  PubMed  CAS  Google Scholar 

  • Mark R. J., Pang Z., Geddes J. W., Uchida K., and Mattson M. P. (1997b) Amyloid β-peptide impairs glucose uptake in hippocampal and cortical neurons: involvement of membrane lipid peroxidation. J. Neurosci. 17, 1046–1054.

    PubMed  CAS  Google Scholar 

  • Masliah E. (1995) Mechanisms of synaptic dysfunction in Alzheimer’s disease. Histol. Histopathol. 10, 509–519.

    PubMed  CAS  Google Scholar 

  • Masliah E., Mallory M., Hansen L., DeTeresa R., Alford M., and Terry R. (1994) Synaptic and neuritic alterations during the the progression of Alzheimer’s disease. Neurosci. Lett. 174, 67–72.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P. (1990) Antigenic changes similar to those seen in neurofibrillary tangles are elicited by glutamate and Ca2+ influx in cultured hippocampal neurons. Neuron 4, 105–117.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P., Engle M. G., and Rychlik B. (1991) Effects of elevated intracellular calcium levels on the cytoskeleton and tau in cultured human cortical neurons. Mol. Chem. Neuropathol. 15, 117–142.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P., Cheng B., Davis D., Bryant K., Lieberburg I., and Rydel R. E. (1992) beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J. Neurosci. 12, 376–389.

    PubMed  CAS  Google Scholar 

  • Mattson M. P., Cheng B., Culwell A. R., Esch F. S., Lieberburg I., and Rydel R. E. (1993a) Evidence for excitoprotective and intraneuronal calcium-regulating roles for secreted forms of the beta-amyloid precursor protein. Neuron 10, 243–254.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P., Barger S. W., Cheng B., Lieberburg I., Smith-Swintosky V. L., and Rydel R. E. (1993b) beta-Amyloid precursor protein metabolites and loss of neuronal Ca2+ homeostasis in Alzheimer’s disease. Trends Neurosci. 16, 409–414.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P. (1994) Secreted forms of beta-amyloid precursor protein modulate dendrite outgrowth and calcium responses to glutamate in cultured embryonic hippocampal neurons. J. Neurobiol. 25, 439–450.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P. and Begley, J. G. (1996) Amyloid β-peptide alters thrombin-induced calcium responses in cultured human neural cells. Amyloid 3, 28–40.

    CAS  Google Scholar 

  • Mattson M. P., Fu W., Waeg G., and Uchida K. (1997) 4-Hydroxynonenal, a product of lipid peroxidation, inhibits dephosphorylation of the microtubule-associated protein tau. Neuroreport 8, 2275–2281.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P. (1997) Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol. Rev. 77, 1081–1132.

    PubMed  CAS  Google Scholar 

  • Mattson M. P., Keller J. N., and Begley J. G. (1998a) Evidence for synaptic apoptosis. Exp. Neurol. 153, 35–48.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P., Partin J., and Begley J. G. (1998b) Amyloid beta-peptide induces apoptosis-related events in synapses and dendrites. Brain Res. 807, 167–176.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P. and Furukawa K. (1998) Signaling events regulating the neurodevelopmental triad. Glutamate and secreted forms of beta-amyloid precursor protein as examples. Perspect. Dev. Neurobiol. 5, 337–352.

    PubMed  CAS  Google Scholar 

  • Mattson M. P., Guo Z. H., and Geiger J. D. (1999) Secreted form of amyloid precursor protein enhances basal glucose and glutamate transport and protects against oxidative impairment of glucose and glutamate transport in synaptosomes by a cyclic GMP-mediated mechanism. J. Neurochem. 73, 532–537.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P. and Duan W. (1999) “Apoptotic” biochemical cascades in synaptic compartments: roles in adaptive plasticity and neurodegenerative disorders. J. Neurosci. Res. 58, 152–166.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P. (2000) Apoptosis in neurodegenerative disorders. Nat. Rev. Mol. Cell Biol. 1, 120–129.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P., LaFerla F. M., Chan S. L., Leissring M. A., Shepel P. N., and Geiger J. D. (2000a) Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci. 23, 222–229.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P., Zhu H., Yu J., and Kindy M. S. (2000b) Presenilin-1 mutation increases neuronal vulnerability to focal ischemia in vivo and to hypoxia and glucose deprivation in cell culture: involvement of perturbed calcium homeostasis. J. Neurosci. 20, 1358–1364.

    PubMed  CAS  Google Scholar 

  • Mattson M. P. and Chan S. L. (2001) Dysregulation of cellular calcium homeostasis in Alzheimer’s disease: bad genes and bad habits. J. Mol. Neurosci. 17, 205–224.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P., Chan S. L., and Camandola S. (2001) Presenilin mutations and calcium signaling defects in the nervous and immune systems. Bioessays 23, 733–744.

    Article  PubMed  CAS  Google Scholar 

  • McConlogue L., Castellano F., deWit C., Schenk D., and Maltese W. A. (1996) Differential effects of a Rab6 mutant on secretory versus amyloidogenic processing of Alzheimer’s beta-amyloid precursor protein. J. Biol. Chem. 271, 1343–1348.

    Article  PubMed  CAS  Google Scholar 

  • McEwen B. S. (2001) Plasticity of the hippocampus: adaptation to chronic stress and allostatic load. Ann. NY Acad. Sci. 933, 265–277.

    Article  PubMed  CAS  Google Scholar 

  • Meziane H., Dodart J. C., Mathis C., Little S., Clemens J., Paul S. M., et al. (1998) Memory-enhancing effects of secreted forms of the beta-amyloid precursor protein in normal and amnestic mice. Proc. Natl. Acad. Sci. USA 95, 12,683–12,688.

    Article  CAS  Google Scholar 

  • Miele L. and Osborne B. (1999) Arbiter of differentiation and death: Notch signaling meets apoptosis. J. Cell. Physiol. 181, 393–409.

    Article  PubMed  CAS  Google Scholar 

  • Mileusnic R., Lancashire C. L., Johnston A. N., and Rose S. P. (2000) APP is required during an early phase of memory formation. Eur. J. Neurosci. 12, 4487–4495.

    Article  PubMed  CAS  Google Scholar 

  • Moechars D., Dewachter I., Lorent K., Reverse D., Baekelandt V., Naidu A., et al. (1999) Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. J. Biol. Chem. 274, 6483–6492.

    Article  PubMed  CAS  Google Scholar 

  • Morfini G., Szebenyi, G., Elluru, R., Ratner, N., and Brady, S. T. (2002) Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility. EMBO J. 21, 281–293.

    Article  PubMed  CAS  Google Scholar 

  • Mouton J., Marty I., Villaz M., Feltz A., and Maulet Y. (2001) Molecular interaction of dihydropyridine receptors with type-1 ryanodine receptors in rat brain. Biochem. J. 354, 597–603.

    Article  PubMed  CAS  Google Scholar 

  • Mucke L., Masliah E., Johnson W. B., Ruppe M. D., Alford M., Rockenstein E. M., et al. (1994) Synaptotrophic effects of human amyloid beta protein precursors in the cortex of transgenic mice. Brain Res. 666, 151–167.

    Article  PubMed  CAS  Google Scholar 

  • Muller U., Cristina N., Li Z. W., Wolfer D. P., Lipp H. P., Rulicke T., et al. (1994) Behavioral and anatomical deficits in mice homozygous for a modified beta-amyloid precursor protein gene. Cell 79, 755–765.

    Article  PubMed  CAS  Google Scholar 

  • Mungarro-Menchaca X., Ferrera P., Moran J., and Aria C. (2002). B-amyloid peptide induces ultrastructural changes in synaptosomes and potentiates mitochondrial dysfunction in the presence of ryanodine. J. Neurosci. Res. 68, 89–96.

    Article  PubMed  CAS  Google Scholar 

  • Murayama M., Tanaka S., Palacino J., Murayama O., Honda T., Sun X., et al. (1998) Direct association of presenilin-1 with beta-catenin. FEBS Lett. 433, 73–77.

    Article  PubMed  CAS  Google Scholar 

  • Murer M. G., Yan Q., and Raisman-Vozari R. (2001) Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Prog. Neurobiol. 63, 171–124.

    Article  Google Scholar 

  • Nagafuchi A. and Takeichi M. (1989) Transmembrane control of cadherin-mediated cell adhesion: a 94 kDa protein functionally associated with a specific region of the cytoplasmic domain of E-cadherin. Cell Regul. 1, 37–44.

    PubMed  CAS  Google Scholar 

  • Nakagawa T. and Yuan J. (2000) Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J. Cell Biol. 150, 887–894.

    Article  PubMed  CAS  Google Scholar 

  • Nalbantoglu J., Tirado-Santiago G., Lahsaini A., Poirier J., Goncalves O., Verge G., et al. (1997) Impaired learning and LTP in mice expressing the carboxy terminus of the Alzheimer amyloid precursor protein. Nature 387, 500–505.

    Article  PubMed  CAS  Google Scholar 

  • Naruse S., Thinakaran G., Luo J. J., Kusiak J. W., Tomita T., Iwatsubo T., et al. (1998) Effects of PS1 deficiency on membrane protein trafficking in neurons. Neuron 21, 1213–1221.

    Article  PubMed  CAS  Google Scholar 

  • Nishimoto I., Okamoto T., Matsuura Y., Takahashi S., Okamoto T., Murayama Y., et al. (1993) Alzheimer amyloid protein precursor complexes with brain GTP-binding protein G(o). Nature 362, 75–79.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura M., Yu G., Levesque G., Zhang D. M., Ruel L., Chen F., et al. (1999) Presenilin mutations associated with Alzheimer disease cause defective intracellular trafficking of beta-catenin, a component of the presenilin protein complex. Nat. Med. 5, 164–169.

    Article  PubMed  CAS  Google Scholar 

  • Nitsch R. M., Farber S. A., Growdon J. H., and Wurtman R. J. (1993) Release of amyloid β-protein precursor derivatives by electrical depolarization of rat hippocampal slices. Proc. Natl. Acad. Sci. USA 90, 5191–5193.

    Article  PubMed  CAS  Google Scholar 

  • Nitsch R. M., Slack B. E., Wurtman R. J., and Growdon J. W. (1992) Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science 258, 304–307.

    Article  PubMed  CAS  Google Scholar 

  • Nitta A., Itoh A., Hasegawa T., and Nabeshima T. (1994) beta-Amyloid protein-induced Alzheimer’s disease animal model. Neurosci. Lett. 170, 63–66.

    Article  PubMed  CAS  Google Scholar 

  • Niwa M., Sidrauski C., Kaufman R. J., and Walter P. (1999) A role for presenilin-1 in nuclear accumulation of Ire1 fragments and induction of the mammalian unfolded protein response. Cell 99, 691–702.

    Article  PubMed  CAS  Google Scholar 

  • Noll E., Medina M., Hartley D., Zhou J., Perrimon N., and Kosik K. S. (2000) Presenilin affects arm/beta-catenin localization and function in Drosophila. Dev. Biol. 227, 450–464.

    Article  PubMed  CAS  Google Scholar 

  • Nottebohm F. (2002) Neuronal replacement in adult brain. Brain Res. Bull. 57, 737–749.

    Article  PubMed  Google Scholar 

  • Novak A. and Dedhar S. (1999) Signaling through beta-catenin and Lef/Tcf. Cell. Mol. Life Sci. 56, 523–537.

    Article  PubMed  CAS  Google Scholar 

  • Ohsawa I., Takamura C., Morimoto T., Ishiguro M., and Kohsaka S. (1999) Amino-terminal region of secreted form of amyloid precursor protein stimulates proliferation of neural stem cells. Eur. J. Neurosci. 11, 1907–1913.

    Article  PubMed  CAS  Google Scholar 

  • Osen-Sand A., Staple J. K., Naldi E., Schiavo G., Rossetto O., Petitpierre S., et al. (1996) Common and distinct fusion proteins in axonal growth and transmitter release. J. Comp. Neurol. 367, 222–234.

    Article  PubMed  CAS  Google Scholar 

  • Ozawa M. and Kemler R. (1998) Altered cell adhesion activity by pervanadate due to the dissociation of alpha-catenin from the E-cadherin.catenin complex. J. Biol. Chem. 273, 6166–6170.

    Article  PubMed  CAS  Google Scholar 

  • Parent A., Linden D. J., Sisodia S. S., and Borchelt D. R. (1999) Synaptic transmission and hippocampal long-term potentiation in transgenic mice expressing FAD-linked presenilin 1. Neurobiol. Dis. 6, 56–62.

    Article  PubMed  CAS  Google Scholar 

  • Patapoutian A. and Reichardt L. F. (2000) Roles of Wnt proteins in neural development and maintenance. Curr. Opin. Neurobiol. 10, 392–399.

    Article  PubMed  CAS  Google Scholar 

  • Patrick G. N., Zukerberg L., Nikolic M., de la Monte S., Dikkes P., and Tsai L. H. (1999) Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402, 615–622.

    Article  PubMed  CAS  Google Scholar 

  • Pedersen W. A., Chan S. L., and Mattson M. P. (2000) A mechanism for the neuroprotective effect of apolipoprotein E: isoform-specific modification by the lipid peroxidation product 4-hydroxynonenal. J. Neurochem. 74, 1426–1433.

    Article  PubMed  CAS  Google Scholar 

  • Pei J. J., Braak E., Braak H., Grundke-Iqbal I., Iqbal K., Winblad B., and Cowburn R. F. (1999) Distribution of active glycogen synthase kinase 3beta (GSK-3beta) in brains staged for Alzheimer disease neurofibrillary changes. J. Neuropathol. Exp. Neurol. 58, 1010–1019.

    PubMed  CAS  Google Scholar 

  • Pei J. J., Tanaka T., Tung Y. C., Braak E., Iqbal K., and Grundke-Iqbal I. (1997) Distribution, levels, and activity of glycogen synthase kinase-3 in the Alzheimer disease brain. J. Neuropathol. Exp. Neurol. 56, 70–78.

    PubMed  CAS  Google Scholar 

  • Perez R. G., Zheng H., Van der Ploeg L. H., and Koo E. H. (1997) The beta-amyloid precursor protein of Alzheimer’s disease enhances neuron viability and modulates neuronal polarity. J. Neurosci. 17, 9407–9414.

    PubMed  CAS  Google Scholar 

  • Phillips H. S., Hains J. M., Armanini M., Laramee G. R., Johnson S. A., and Winslow J. W. (1991) BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer’s disease. Neuron 7, 695–702.

    Article  PubMed  CAS  Google Scholar 

  • Pigino G., Pelsman A., Mori H., and Busciglio J. (2001) Presenilin-1 mutations reduce cytoskeletal association, deregulate neurite growth, and potentiate neuronal dystrophy and tau phosphorylation. J. Neurosci. 21, 834–842.

    PubMed  CAS  Google Scholar 

  • Pradier L., Carpentier N., Delalonde L., Clavel N., Bock M. D., Buee L., et al. (1999) Mapping the APP/presenilin (PS) binding domains: the hydrophilic N-terminus of PS2 is sufficient for interaction with APP and can displace APP/PS1 interaction. Neurobiol. Dis. 6, 43–55.

    Article  PubMed  CAS  Google Scholar 

  • Prolla T. A. and Mattson M. P. (2001) Molecular mechanisms of brain aging and neurodegenerative disorders: lessons from dietary restriction. Trends Neurosci. 24, S21-S31.

    Article  PubMed  CAS  Google Scholar 

  • Querfurth H. W. and Selkoe D. J. (1994) Calcium ionophore increases amyloid beta peptide production by cultured cells. Biochemistry 33, 550–4561.

    Article  Google Scholar 

  • Rao M. S. and Mattson M. P. (2001) Stem cells and aging: expanding the possibilities. Mech. Ageing Dev. 122, 713–734.

    Article  PubMed  CAS  Google Scholar 

  • Ray W. J., Yao M., Nowotny P., Mumm J., Zhang W., Wu J. Y., Kopan R., et al. (1999) Evidence for a physical interaction between presenilin and Notch. Proc. Natl. Acad. Sci. USA 96, 3263–3268.

    Article  PubMed  CAS  Google Scholar 

  • Redmond L., Oh S. R., Hicks C., Weinmaster G., and Ghosh A. (2000) Nuclear Notch1 signaling and the regulation of dendritic development. Nat. Neurosci. 3, 30–40.

    Article  PubMed  CAS  Google Scholar 

  • Ribaut-Barassin C., Moussaoui S., Brugg B., Haeberle A. M., Huber G., Imperato A., et al. (2000) Hemisynaptic distribution patterns of presenilins and beta-APP isoforms in the rodent cerebellum and hippocampus. Synapse 35, 96–110.

    Article  PubMed  CAS  Google Scholar 

  • Roch J. M., Masliah E., Roch-Levecq A. C., Sundsmo M. P., Otero D. A., Veinbergs I., et al. (1994) Increase of synaptic density and memory retention by a peptide representing the trophic domain of the amyloid beta/A4 protein precursor. Proc. Natl. Acad. Sci. USA 91, 7450–7454.

    Article  PubMed  CAS  Google Scholar 

  • Rubinfeld B., Albert I., Porfiri E., Fiol C., Munemitsu S., and Polakis P. (1996) Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science 272, 1023–1026.

    Article  PubMed  CAS  Google Scholar 

  • Sabo S. L., Ikin A. F., Buxbaum J. D., and Greengard P. (2001) The Alzheimer amyloid precursor protein (APP) and FE65, an APP-binding protein, regulate cell movement. J. Cell Biol. 153, 1403–1414.

    Article  PubMed  CAS  Google Scholar 

  • Saleshando G. and O’Connor J. J. (2000) SB203580. the p38 mitogen-activated protein kinase inhibitor blocks the inhibitory effect of beta-amyloid on long-term potentiation in the rat hippocampus. Neurosci. Lett. 288, 119–122.

    Article  PubMed  CAS  Google Scholar 

  • Salinska E. J., Bourne R. C., and Rose S. P. (2001) Long-term memory formation in the chick requires mobilization of ryanodine-sensitive intracellular calcium stores. Neurobiol. Learn. Mem. 75, 293–302.

    Article  PubMed  CAS  Google Scholar 

  • Sapp E., Penney J., Young A., Aronin N., Vonsattel J. P., and DiFiglia M. (1999) Axonal transport of N-terminal huntingtin suggests early pathology of corticostriatal projections in Huntington disease. J. Neuropathol. Exp. Neurol. 58, 165–173.

    Article  PubMed  CAS  Google Scholar 

  • Sastre M., Steiner H., Fuchs K., Capell A., Multhaup G., Condron M. M., et al. (2001) Presenilin-dependent gamma-secretase processing of beta-amyloid precursor protein at a site corresponding to the S3 cleavage of Notch. EMBO J. Rep. 2, 835–841.

    Article  CAS  Google Scholar 

  • Scheper W., Zwart R., Sluijs P., Annaert W., Gool W. A., and Baas F. (2000) Alzheimer’s presenilin 1 is a putative membrane receptor for rab GDP dissociation inhibitor. Hum. Mol. Genet. 9, 303–310.

    Article  PubMed  CAS  Google Scholar 

  • Schneider I., Reverse D., Dewachter I., Ris L., Caluwaerts N., Kuiperi C., et al. (2001) Mutant presenilins disturb neuronal calcium homeostasis in the brain of transgenic mice, decreasing the threshold for excitotoxicity and facilitating long-term potentiation. J. Biol. Chem. 276, 11,539–11,544.

    CAS  Google Scholar 

  • Schroeter E. H., Kisslinger J. A., and Kopan R. (1998) Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393, 382–386.

    Article  PubMed  CAS  Google Scholar 

  • Schubert W., Prior R., Weidemann A., Dircksen H., Multhaup G., Masters C. L., et al. (1991) Localization of Alzheimer beta A4 amyloid precursor protein at central and peripheral synaptic sites. Brain Res. 563, 184–194.

    Article  PubMed  CAS  Google Scholar 

  • Schuman E. M. and Madison D. V. (1991) A requirement for the intercellular messenger nitric oxide in long-term potentiation. Science 254, 1503–1506.

    Article  PubMed  CAS  Google Scholar 

  • Seabrook G. R., Smith D. W., Bowery B. J., Easter A., Reynolds T., Fitzjohn S. M., et al. (1999) Mechanisms contributing to the deficits in hippocampal synaptic plasticity in mice lacking amyloid precursor protein. Neuropharmacology 38, 349–359.

    Article  PubMed  CAS  Google Scholar 

  • Seabrook G. R., Smith D. W., Bowery B. J., Easter A., Reynolds T., Fitzjohn S. M., et al. (1999) Mechanisms contributing to the deficits in hippocampal synaptic plasticity in mice lacking amyloid precursor protein. Neuropharmacology 38, 349–359.

    Article  PubMed  CAS  Google Scholar 

  • See V. and Loeffler J. P. (2001) Oxidative stress induces neuronal death by recruiting a protease and phosphatase-gated mechanism. Biol. Chem. 276, 35,049–35,059.

    CAS  Google Scholar 

  • Selkoe D. J. (2001) Presenilin, Notch, and the genesis and treatment of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 98, 11,039–11,041.

    Article  CAS  Google Scholar 

  • Sestan N., Artavanis-Tsakonas S., and Rakic P. (1999) Contact-dependent inhibition of cortical neurite growth mediated by notch signaling. Science 286, 741–746.

    Article  PubMed  CAS  Google Scholar 

  • Shen J., Bronson R. T., Chen D. F., Xia W., Selkoe D. J., and Tonegawa S. (1997) Skeletal and CNS defects in Presenilin-1-deficient mice. Cell 89, 629–639.

    Article  PubMed  CAS  Google Scholar 

  • Shimuta M., Yoshikawa M., Fukaya M., Watanabe M., Takeshima H., and Manabe T. (2001) Postsynaptic modulation of AMPA receptor-mediated synaptic responses and LTP by the type 3 ryanodine receptor. Mol. Cell. Neurosci. 17, 921–930.

    Article  PubMed  CAS  Google Scholar 

  • Sisodia S. S., Kim S. H., and Thinakaran G. (1999) Function and dysfunction of the presenilins. Am. J. Hum. Genet. 65, 7–12.

    Article  PubMed  CAS  Google Scholar 

  • Small D. H., Nurcombe V., Reed G., Clarris H., Moir R., Beyreuther K., et al. (1994) A heparin-binding domain in the amyloid protein precursor of Alzheimer’s disease is involved in the regulation of neurite outgrowth. J. Neurosci. 14, 2117–2127.

    PubMed  CAS  Google Scholar 

  • Smith S. K., Anderson H. A., Yu G., Robertson A. G., Allen S. J., Tyler S. J., et al. (2000) Identification of syntaxin 1A as a novel binding protein for presenilin-1. Mol. Brain Res. 78, 100–107.

    Article  PubMed  CAS  Google Scholar 

  • Song W., Nadeau P., Yuan M., Yang X., Shen J., and Yankner B. A. (1999) Proteolytic release and nuclear translocation of Notch-1 are induced by presenilin-1 and impaired by pathogenic presenilin-1 mutations. Proc. Natl. Acad. Sci. USA 96, 6959–6963.

    Article  PubMed  CAS  Google Scholar 

  • Soriano S., Kang D. E., Fu M., Pestell R., Chevallier N., Zheng H., et al. (2001) Presenilin 1 negatively regulates beta-catenin/T cell factor/lymphoid enhancer factor-1 signaling independently of beta-amyloid precursor protein and notch processing. J. Cell Biol. 152, 785–794.

    Article  PubMed  CAS  Google Scholar 

  • Stahl B., Diehlmann A., and Sudhof T. C. (1999) Direct interaction of Alzheimer’s disease-related presenilin 1 with armadillo protein p0071. J. Biol. Chem. 274, 9141–9148.

    Article  PubMed  CAS  Google Scholar 

  • Steiner H. and Haass C. (2001) Nuclear signaling: a common function of presenilin substrates? J. Mol. Neurosci. 17, 193–198.

    Article  PubMed  CAS  Google Scholar 

  • Stephan A., Laroche S., and Davis S. (2001) Generation of aggregated beta-amyloid in the rat hippocampus impairs synaptic transmission and plasticity and causes memory deficits. J. Neurosci. 21, 5703–5714.

    PubMed  CAS  Google Scholar 

  • Struhl G. and Greenwald I. (1999) Presenilin is required for activity and nuclear access of notch in Drosophila. Nature 398, 522–525.

    Article  PubMed  CAS  Google Scholar 

  • Sych M., Hartmann H., Steiner B., and Mueller W. E. (2000) Presenilin I interaction with cytoskeleton and association with actin filaments. Neuroreport 11, 3091–3098.

    Article  PubMed  CAS  Google Scholar 

  • Takashima A., Murayama M., Murayama O., Kohno T., Honda T., Yasutake K., et al. (1998) Presenilin 1 associates with glycogen synthase kinase-3beta and its substrate tau. Proc. Natl. Acad. Sci. USA 95, 9637–9641.

    Article  PubMed  CAS  Google Scholar 

  • Tanahashi H. and Tabira T. (1999) Isolation of human delta-catenin and its binding specificity with presenilin 1. Neuroreport 10, 563–568.

    Article  PubMed  CAS  Google Scholar 

  • Tanahashi H. and Tabira T. (1999) X11L2, a new member of the X11 protein family, interacts with Alzheimer’s beta-amyloid precursor protein. Biochem. Biophys. Res. Commun. 255, 663–667.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H., Shan W., Phillips G. R., Arndt K., Bozdagi O., Shapiro L., et al. (2000) Molecular modification of N-cadherin in response to synaptic activity. Neuron 25, 93–107.

    Article  PubMed  CAS  Google Scholar 

  • Tang L., Hung C. P., and Schuman E. M. (1998) A role for the cadherin family of cell adhesion molecules in hippocampal long-term potentiation. Neuron 20, 1165–1175.

    Article  PubMed  CAS  Google Scholar 

  • Tesseur I., Van Dorpe J., Bruynseels K., Bronfman F., Sciot R., Van Lommel A., et al. (2000) Prominent axonopathy and disruption of axonal transport in transgenic mice expressing human apolipoprotein E4 in neurons of brain and spinal cord. Am. J. Pathol. 157, 1495–1510.

    PubMed  CAS  Google Scholar 

  • Uemura T. (1998) The cadherin superfamily at the synapse: more members, more missions. Cell 93, 1095–1098.

    Article  PubMed  CAS  Google Scholar 

  • Walsh D. M., Klyubin I., Fadeeva J. V., Cullen W. K., Anwyl R., Wolfe M. S., et al. (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535–539.

    Article  PubMed  CAS  Google Scholar 

  • Wang H. W., Pasternak J. F., Kuo H., Ristic H., Lambert M. P., Chromy B., et al. (2002) Soluble oligomers of β amyloid (1–42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res. 924, 133–140.

    Article  PubMed  CAS  Google Scholar 

  • Weihl C. C., Ghadge G. D., Kennedy S. G., Hay N., Miller R. J., and Roos R. P. (1999) Mutant presenilin-1 induces apoptosis and downregulates Akt/PKB. J. Neurosci. 19, 5360–5369.

    PubMed  CAS  Google Scholar 

  • Wong P. C., Zheng H., Chen H., Becher M. W., Sirinathsinghji D. J., Trumbauer M. E., et al. (1997) Presenilin 1 is required for Notch1 and DII1 expression in the paraxial mesoderm. Nature 387, 288–292.

    Article  PubMed  CAS  Google Scholar 

  • Wu J., Anwyl R., and Rowan M. J. (1995) β-Amyloid (1–40) increases long-term potentiation in rat hippocampus in vitro. Eur. J. Pharmacol. 284, R1-R3.

    Article  PubMed  CAS  Google Scholar 

  • Xia W., Zhang J., Perez R., Koo E. H., and Selkoe D. J. (1997) Interaction between amyloid precursor protein and presenilins in mammalian cells: implications for the pathogenesis of Alzheimer disease. Proc. Natl. Acad. Sci. USA 94, 8208–8213.

    Article  PubMed  CAS  Google Scholar 

  • Xu X., Shi Y., Wu X., Gambetti P., Sui D., and Cui M. Z. (1999) Identification of a novel PSD-95/Dlg/ZO-1 (PDZ)-like protein interacting with the C terminus of presenilin-1. J. Biol. Chem. 274, 32,543–32,546.

    CAS  Google Scholar 

  • Ye L. and Qiao J. T. (1999) Suppressive action produced by β-amyloid peptide fragment 31–35 on long-term potentiation in rat hippocampus is N-methyl-D-aspartate receptor-independent: it’s offset by (-)huperzine A. Neurosci. Lett. 275, 187–190.

    Article  PubMed  CAS  Google Scholar 

  • Yoo A. S., Cheng I., Chung S., Grenfell T. Z., Lee H., Pack-Chung E., et al. (2000) Presenilin-mediated modulation of capacitative calcium entry. Neuron 27, 561–572.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura H., Sugai T., Onoda N., Segami N., and Kato N. (2002) Age-dependent occurrence of synchronized population oscillation suggestive of a developing functional coupling between NMDA and ryanodine receptors in the neocortex. Brain Res. Dev. Brain Res. 136, 63–68.

    Article  PubMed  CAS  Google Scholar 

  • Yu C., Kim S. H., Ikeuchi T., Xu H., Gasparini L., Wang R., and Sisodia S. S. (2001) Characterization of a presenilin-mediated amyloid precursor protein carboxyl-terminal fragment gamma. Evidence for distinct mechanisms involved in gamma-secretase processing of the APP and Notch1 transmembrane domains. J. Biol. Chem. 276, 43,756–43,760.

    CAS  Google Scholar 

  • Zhang W., Han S. W., McKeel D. W., Goate A., and Wu J. Y. (1998a) Interaction of presenilins with the filamin family of actin-binding proteins. J. Neurosci. 18, 914–922.

    PubMed  CAS  Google Scholar 

  • Zhang Z., Hartmann H., Do V. M., Abramowski D., Sturchler-Pierrat C., Staufenbiel M., et al. (1998b) Destabilization of beta-catenin by mutations in presenilin-1 potentiates neuronal apoptosis. Nature 395, 698–702.

    Article  PubMed  CAS  Google Scholar 

  • Zheng H., Jiang M., Trumbauer M. E., Hopkins R., Sirinathsinghji D. J., Stevens K. A., et al. (1996) Mice deficient for the amyloid precursor protein gene. Ann. NY Acad. Sci. 777, 421–426.

    Article  PubMed  CAS  Google Scholar 

  • Zhou J., Liyanage U., Medina M., Ho C., Simmons A. D., Lovett M., et al. (1997) Presenilin 1 interaction in the brain with a novel member of the Armadillo family. Neuroreport 8, 1489–1494.

    Article  PubMed  CAS  Google Scholar 

  • Zhu H., Guo Q., and Mattson M. P. (1999) Dietary restriction protects hippocampal neurons against the death-promoting action of a presenilin-1 mutation. Brain Res. 842, 224–229.

    Article  PubMed  CAS  Google Scholar 

  • Zilberter Y. (2000) Dendritic release of glutamate suppresses synaptic inhibition of pyramidal neurons in rat neocortex. J. Physiol. 528, 489–496.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sic L. Chan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, S.L., Furukawa, K. & Mattson, M.P. Presenilins and APP in neuritic and synaptic plasticity. Neuromol Med 2, 167–196 (2002). https://doi.org/10.1385/NMM:2:2:167

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/NMM:2:2:167

Index Entries

Navigation