Skip to main content
Log in

Nanoscale time-lapse AFM imaging in solution for DNA aggregation

  • Original Article
  • Published:
NanoBiotechnology

Abstract

Revealing the behavior of biofunctional molecules (i.e., nucleic acids, nucleic acid binding reagents, enzymatic proteins, etc.) by monitoring them in solution is important for understanding the nanoscale dynamism of their interactions. Atomic force microscope (AFM) imaging with a dynamic force mode (DFM, i.e., tapping mode) in aqueous solution, has many advantages for the imaging of DNA morphological change at a single molecule scale. Hoechst 33258 (H33258) induces DNA condensation in the presence of its excess concentration. To have a better understanding of the condensation process of DNA with excess H33258, we tried to find the optimum conditions for carrying out time-lapse AFM imaging in aqueous solution. To immobilize DNA on the substrate surface, the mica was modified with the various concentrations of 3-aminopropyltriethoxysilane (APTES) solution. We observed that DNA was minimally immobilized on 0.002% APTES-modified mica surface. Then, we determined that the movement of DNA on the mica surface could be observed in the presence of 500 mM NaCl in 10 mM PBS (pH 7.0). Moreover, after the injection of 5 µM H33258, the partial condensation of DNA was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reddy, B. S., Sharma, S. K., and Lown, J. W. (2001), Curr. Med. Chem. 8, 475–508.

    CAS  Google Scholar 

  2. Latt, S. A. and Wohlleb, J. C. (1975), Chromosoma 52, 297–316.

    Article  CAS  Google Scholar 

  3. Kobayashi, M., Kusakawa, T., Saito, M., et al. (2004), Electrochem. Commun. 6, 337–343.

    Article  CAS  Google Scholar 

  4. Gavathiotis, E., Sharman, G. J., and Searle, M. S. (2000), Nucleic Acids Res. 28, 728–735.

    Article  CAS  Google Scholar 

  5. Harris, S. A., Gavathiotis, E., Searle, M. S., Orozco, M., and Laughton, C. A. (2001), J. Am. Chem. Soc. 123, 12,658–12,663.

    Article  CAS  Google Scholar 

  6. Squire, C. J., Baker, L. J., Clark, G. R., Martin, R. F., and White, J. (2000), Nucleic Acids Res. 28, 1252–1258.

    Article  CAS  Google Scholar 

  7. Drobyshev, A. L., Zasedatelev, A. S., Yershov, G. M., and Mirzabekov, A. D. (1999), Nucleic Acids Res. 27, 4100–4105.

    Article  CAS  Google Scholar 

  8. Stokke, T. and Steen, H. B. (1985), J. Histochem. Cytochem. 33, 333–338.

    CAS  Google Scholar 

  9. Saito, M., Kobayashi, M., Iwabuchi, S., Morita, Y., Takamura, Y., and Tamiya, E. (2004), J. Biochem. (Tokyo). 136, 813–823.

    CAS  Google Scholar 

  10. Aleman, C., Adhikary, A., Zanuy, D., and Casanovas, J. (2002), J. Biomol. Struct. Dyn. 20, 301–310.

    CAS  Google Scholar 

  11. Wolffe, A. (1995), Chromatin: structure and function, Academic Press, London.

    Google Scholar 

  12. Davis, M. E. (2002), Curr. Opin. Biotechnol. 13, 128–131.

    Article  CAS  Google Scholar 

  13. Bloomfield, V. A. (1996), Curr. Opin. Struct. Biol. 6, 334–341.

    Article  CAS  Google Scholar 

  14. Andrushchenko, V., Leonenko, Z., Cramb, D., van de Sande, H., and Wieser, H. (2001), Biopolymers 61, 243–260.

    Article  CAS  Google Scholar 

  15. Arscott, P. G., Ma, C., Wenner, J. R., and Bloomfield, V. A. (1995), Biopoymers 36, 345–364.

    Article  CAS  Google Scholar 

  16. He, S., Arscott, P. G., and Bloomfield, V. A. (2000), Biopolymers 53, 329–341.

    Article  CAS  Google Scholar 

  17. Takahashi, M., Yoshikawa, K., Vasilevskaya, V. V., and Khokhlov, A. R. (1997), J. Phys. Chem. B 101, 9396–9401.

    Article  CAS  Google Scholar 

  18. Li, A. Z., Qi, L. J., Shih, H. H., and Marx, K. A. (1996), Biopolymers 38, 367–376.

    Article  CAS  Google Scholar 

  19. Martin, A. L., Davies, M. C., Rackstraw, B. J., et al. (2000), FEBS Lett. 480, 106–112.

    Article  CAS  Google Scholar 

  20. Binning, G., Quate, C. F., and Gerber, C. (1986), Phys. Rev. Lett. 56, 930–933.

    Article  Google Scholar 

  21. Lyubchenko, Y. L. (2004), Cell Biochem. Biophys. 41, 75–98.

    CAS  Google Scholar 

  22. Hansma, H. G., Pietrasanta, L. I., Auerbach, I. D., Sorenson, C., Golan, R., and Holden, P. A. (2000), J. Biomater. Sci. Polym. Ed. 11, 675–683.

    Article  CAS  Google Scholar 

  23. Bezanilla, M., Manne, S., Laney, D. E., Lyubchenko, Y. L., and Hansma, H. G. (1995), Langmuir 11, 655–659.

    Article  CAS  Google Scholar 

  24. Umemura, K., Ishikawa, M., and Kuroda, R. (2001), Anal. Biochem. 290, 232–237.

    Article  CAS  Google Scholar 

  25. Lyubchenko, Y. L. and Shlyakhtenko, L. S. (1997), Proc. Natl. Acad. Sci. USA 94, 496–501.

    Article  CAS  Google Scholar 

  26. Nagami, F., Zuccheri, G., Samori, B., and Kuroda, R. (2002), Anal. Biochem. 300, 170–176.

    Article  CAS  Google Scholar 

  27. Shlyakhtenko, L. S., Potaman, V. N., Sinden, R. R., and Lyubchenko, Y. L. (1998), J. Mol. Biol. 280, 61–72.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiichi Tamiya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saito, M., Takamura, Y. & Tamiya, E. Nanoscale time-lapse AFM imaging in solution for DNA aggregation. Nanobiotechnol 1, 361–368 (2005). https://doi.org/10.1385/NBT:1:4:361

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/NBT:1:4:361

Key Words

Navigation