Skip to main content
Log in

Studying the effects of actin cytoskeletal destabilization on cell cycle by cofilin overexpression

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The significance of actin cytoskeleton on cell growth was historically studied using toxic drugs, such as cytochalasin. However, it is possible that unpredictable effects of these agents may have influenced the reported observations. In our study, we have established a drug-free system using cofilin overexpression to investigate the relationship between actin filaments and cell cycle progression. Cofilin is a member of the actin depolymerization factor (ADF)/cofilin family, cofilin cDNA was cloned to a tetracycline-inducible gene expression vector and stably transfected to human lung cancer H1299 epithelial cells. Destabilization of actin filaments and morphological change was detected in cofilin overexpressing cells by actin analysis and microscopy, respectively. Measurements of growth rates showed that cell proliferation was retarded in cells with overexpressed cofilin. Also, cell cycle analysis showed that approx 90% of cofilin overexpressing cells were arrested in G1 phase, which is consistent with previous reports that drug-mediated disruption of actin filaments can cause G1 phase arrest. Taken together, cofilin overexpression cell model provides evidence that the effects of actin cytoskeletal destabilization on cell cycle progression can be studied using molecular approach instead of drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carlier, M. F. (1998) Control of actin dynamics. Curr. Opin. Cell Biol. 10, 45–51.

    Article  PubMed  CAS  Google Scholar 

  2. Chen, H., Bernstein, B. W., and Bamburg, J. R. (2000) Regulating actin-filament dynamics in vivo. Trends Biochem. Sci. 25, 19–23.

    Article  PubMed  CAS  Google Scholar 

  3. Mitchison, T. J. and Cramer, L. P. (1996) Actin-based cell motility and cell locomotion. Cell 84, 371–379.

    Article  PubMed  CAS  Google Scholar 

  4. Assoian, R. K. and Zhu, X. (1997) Cell anchorage and the cytoskeleton as partners in growth factor dependent cell cycle progression. Curr. Opin. Cell Biol. 9, 93–98.

    Article  PubMed  CAS  Google Scholar 

  5. Carter, S. B. (1967) Effects of cytochalasins on mammalian cells. Nature 213, 261–264.

    Article  PubMed  CAS  Google Scholar 

  6. Maness, P. F. and Walsh, R. C., Jr. (1982) Dihydrocytochalasin B disorganizes actin cytoarchitecture and inhibits initiation of DNA synthesis in 3T3 cells. Cell 30, 253–262.

    Article  PubMed  CAS  Google Scholar 

  7. Lindholm, C., Norppa, H., Hayashi, M., and Sorsa, M. (1991) Induction of micronuclei and anaphase aberrations by cytochalasin B in human lymphocyte cultures. Mutat. Res. 260, 369–375.

    Article  PubMed  CAS  Google Scholar 

  8. Bamburg, J. R., McGough, A., and Ono, S. (1999) Putting a new twist on actin: ADF/cofilins modulate actin dynamics. Trends Cell Biol. 9, 364–370.

    Article  PubMed  CAS  Google Scholar 

  9. Carlier, M. F., Laurent, V., Santolini, J., et al. (1997) Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J. Cell Biol. 136, 1307–1322.

    Article  PubMed  CAS  Google Scholar 

  10. Maciver, S. K. (1998) How ADF/cofilin depolymerizes actin filaments. Curr. Opin. Cell Biol. 10, 140–144.

    Article  PubMed  CAS  Google Scholar 

  11. Carlier, M. F. and Pantaloni, D. (1997) Control of actin dynamics in cell motility. J. Mol. Biol. 269, 459–467.

    Article  PubMed  CAS  Google Scholar 

  12. Maciver, S. K., Pope, B. J., Whytock, S., and Weeds, A. G. (1998) The effect of two actin depolymerizing factors (ADF/cofilins) on actin filament turnover: pH sensitivity of F-actin binding by human ADF, but not of Acanthamoeba actophorin. Eur. J. Biochem. 256, 388–397.

    Article  PubMed  CAS  Google Scholar 

  13. Lappalainen, P. and Drubin, D. G. (1997) Cofilin promotes rapid actin filament turnover in vivo. Nature 388, 78–82.

    Article  PubMed  CAS  Google Scholar 

  14. McGrath, J. L., Osborn, E. A., Tardy, Y. S., Dewey, C. F., Jr., and Hartwig, J. H. (2000) Regulation of the actin cycle in vivo by actin filament severing. Proc. Natl. Acad. Sci. USA 97, 6532–6537.

    Article  PubMed  CAS  Google Scholar 

  15. Strathdee, C. A., McLeod, M. R., and Hall, J. R. (1999) Efficient control of tetracycline-responsive gene expression from an autoregulated bi-directional expression vector. Gene 229, 21–29.

    Article  PubMed  CAS  Google Scholar 

  16. Patterson, R. L., van Rossum, D. B., and Gill, D. L. (1999) Store-operated Ca2+ entry: evidence for a secretion-like coupling model. Cell 98, 487–499.

    Article  PubMed  CAS  Google Scholar 

  17. Blikstad, I., Markey, F., Carlsson, L., Persson, T., and Lindberg, U. (1978) Selective assay of monomeric and filamentous actin in cell extracts, using inhibition of deoxyribonuclease I. Cell 15, 935–943.

    Article  PubMed  CAS  Google Scholar 

  18. Nosworthy, N. J., Kekic, M., and dos Remedios, C. G. (2001) The affinity of chick cofilin for actin increases when actin is complexed with DNase I: formation of a cofilin-actin-DNase I ternary complex. Proteomics 1, 1513–1518.

    Article  PubMed  CAS  Google Scholar 

  19. Lohez, O. D., Reynaud, C., Borel, F., Andreassen, P. R., and Margolis, R. L. (2003) Arrest of mammalian fibroblasts in G1 in response to actin inhibition is dependent on retinoblastoma pocket proteins but not on p53. J. Cell Biol. 161, 67–77.

    Article  PubMed  CAS  Google Scholar 

  20. Sumi, T., Matsumoto, K., and Nakamura, T. (2002) Mitosis-dependent phosphorylation and activation of LIM-kinase I. Biochem. Biophys. Res. Commun. 290, 1315–1320.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Jang Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, YJ., Keng, P.C. Studying the effects of actin cytoskeletal destabilization on cell cycle by cofilin overexpression. Mol Biotechnol 31, 1–10 (2005). https://doi.org/10.1385/MB:31:1:001

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:31:1:001

Index Entries

Navigation