Skip to main content
Log in

Natural secretory products of human neural and microvessel endothelial cells

Implications in pathogenic “Spreading” and Alzheimer's disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neurons, glia, and endothelial cells of the cerebral microvasculature co-exist in intimate proximity in nervous tissues, and their homeostatic interactions in health, as well as coordinated response to injury, have led to the concept that they form the basic elements of a functional neurovascular unit. During the course of normal cellular metabolism, growth, and development, each of these brain cell types secrete various species of potentially neurotoxic peptides and factors, events that increase in magnitude as brain cells age. This article reviews contemporary research on the secretory products of the three primary cell types that constitute the neurovascular unit in deep brain regions. We provide some novel in vitro data that illustrate potentially pathogenic paracrine effects within primary cells of the neurovascular unit. For example, the pro-inflammatory cytokine interleukin (IL)-1β was found to stimulate amyloid-β (Aβ) peptide release from human neural cells, and human brain microvessel endothelial cells exposed to transient hypoxia were found to secrete IL-1β at concentrations known to induce Aβ42 peptide release from human neural cells. Hypoxia and excessive IL-1β and Aβ42 abundance are typical pathogenic stress factors implicated in the initiation and development of common, chronic neurological disorders such as Alzheimer's disease. These data support the hypothesis that paracrine effects of stressed constituent cells of the neurovascular unit may contribute to “spreading effects” characteristic of progressive neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Iadecola C. (2004) Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat. Rev. Neurosci. 5, 347–360.

    Article  PubMed  CAS  Google Scholar 

  2. Girouard H. and Iadecola C. (2006) Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J. Appl. Physiol. 100, 328–335.

    Article  PubMed  CAS  Google Scholar 

  3. McCarty J. H. (2005) Cell biology of the neurovascular unit: implications for drug delivery across the blood-brain barrier. Assay Drug Dev. Technol. 3, 89–95.

    Article  PubMed  CAS  Google Scholar 

  4. Hawkins B. T. and Davis T. P. (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol. Rev. 57, 173–185.

    Article  PubMed  CAS  Google Scholar 

  5. Nicoll J. A., Yamada M., Frackowiak J., Mazur-Kolecka, B., and Weller R. O. (2004) Cerebral amyloid angiopathy plays a direct role in the pathogenesis of Alzheimer's disease. Pro-CAA position statement. Neurobiol. Aging 25, 589–597.

    Article  PubMed  CAS  Google Scholar 

  6. Bailey T. L., Rivara C. B., Rocher A. B., and Hof P. R. (2004) The nature and effects of cortical microvascular pathology in aging and Alz. heimer's disease. Neurol. Res. 26, 573–578.

    Article  PubMed  Google Scholar 

  7. Humpel C. and Marksteiner J. (2005) Cerebrovascular damage as a cause for Alzheimer's disease. Curr Neurovasc Res 2, 341–347.

    Article  PubMed  CAS  Google Scholar 

  8. Carmeliet P. (2003) Blood vessels and nerves: common signals, pathways and diseases. Nat Rev Genet 4, 710–720.

    Article  PubMed  CAS  Google Scholar 

  9. Zlokovic B. V. (2005) Neurovascular mechanisms of Alzheimer's neurodegeneration. Trends Neurosci. 28, 202–208.

    Article  PubMed  CAS  Google Scholar 

  10. Garcia-Segura L. M. and McCarthy M. M. (2004) Role of glia in neuroendocrine function. Endocrinology 145, 1082–1086.

    Article  PubMed  CAS  Google Scholar 

  11. Benarroch E. E. (2005) Neuron-astrocyte interactions: partnership for normal function and disease in the central nervous system. Mayo Clin. Proc. 80, 1326–1338.

    PubMed  CAS  Google Scholar 

  12. Ward N. L. and Lamanna J. C. (2004) The neurovascular unit and its growth factors: coordinated response in the vascular and nervous systems. Neurol. Res. 26, 870–883.

    Article  PubMed  CAS  Google Scholar 

  13. Lukiw W. J., Cui J. G., Marcheselli V. L., et al. (2005) A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J. Clin. Invest. 115, 2774–2783.

    Article  PubMed  CAS  Google Scholar 

  14. Hardy J. A. and Higgins G. A. (1992) Alzheimer's disease: the amyloid cascade hypothesis. Science 256, 184, 185.

    Article  PubMed  CAS  Google Scholar 

  15. Selkoe D. J. (1994) Alzheimer's disease: a central role for amyloid. J. Neuropathol. Exp. Neurol. 53, 438–447.

    PubMed  CAS  Google Scholar 

  16. Kawarabayashi T., Younkin L. H., Saido T. C., Shoji M., Ashe K. H., and Younkin S. G. (2001) Age-dependent changes in brain, CSF, and plasma amyloid (beta) protein in the Tg2576 transgenic mouse model of Alzheimer's disease. J. Neurosci. 21, 372–381.

    PubMed  CAS  Google Scholar 

  17. Lee E. B., Skovronsky D. M., Abtahian F., Doms R. W., and Lee V. M. (2003) Secretion and intracellular generation of truncated Abeta in betasite amyloid-beta precursor protein-cleaving enzyme expressing human neurons. J. Biol. Chem. 278, 4458–4466.

    Article  PubMed  CAS  Google Scholar 

  18. Yao Y., Chinnici C., Tang H., Trojanowski J. Q., Lee V. M., and Pratico D. (2004) Brain inflammation and oxidative stress in a transgenic mouse model of Alzheimer-like brain amyloidosis. J Neuroinflammation 1, 21.

    Article  PubMed  CAS  Google Scholar 

  19. Mattson M. P. (2004) Pathways towards and away from Alzheimer's disease. Nature 430, 631–639.

    Article  PubMed  CAS  Google Scholar 

  20. Gandy S. (2005) The role of cerebral amyloid beta accumulation in common forms of Alzheimer disease. J. Clin. Invest. 115, 1121–1129.

    Article  PubMed  CAS  Google Scholar 

  21. Turner P. R., O'Connor K., Tate W. P., and Abraham W. C. (2003) Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog. Neurobiol. 70, 1–32.

    Article  PubMed  CAS  Google Scholar 

  22. Holscher C. (2005) Development of beta-amyloid-induced neurodegeneration in Alzheimer's disease and novel neuroprotective strategies. Rev. Neurosci. 16, 181–212.

    PubMed  CAS  Google Scholar 

  23. Kim W. and Hecht M. H. (2005) Sequence determinants of enhanced amyloidogenicity of Alzheimer Aβ42 peptide relative to Aβ40. J. Biol. Chem. 280, 35,069–35,076.

    CAS  Google Scholar 

  24. Bitan G., Kirkitadze M. D., Lomakin A., Vollers S. S., Benedek G. B., and Teplow D. B. (2003) Amyloid beta-protein (Abeta) assembly: Abeta 40 and Abeta 42 oligomerize through distinct pathways. Proc. Natl. Acad. Sci. USA 100, 330–335.

    Article  PubMed  CAS  Google Scholar 

  25. Herzig M. C., Winkler D. T., Burgermeister P., et al. (2004) Abeta is targeted to the vasculature in a mouse model of hereditary cerebral hemorrhage with amyloidosis. Nat. Neurosci. 7, 954–960.

    Article  PubMed  CAS  Google Scholar 

  26. Klein W. L., Krafft G. A., and Finch C. E. (2001) Targeting small Abeta oligomers: the solution to an Alzheimer's disease conundrum? Trends Neurosci. 24, 219–224.

    Article  PubMed  CAS  Google Scholar 

  27. Lambert M. P., Barlow A. K., Chromy B. A., et al. (1998) Diffusible, nonfibrillar ligands derived from Abeta1–42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA 95, 6448–6453.

    Article  PubMed  CAS  Google Scholar 

  28. Nilsberth C., Westlind-Danielsson A., Eckman C. B., et al. (2001) The ‘Arctic’ APP mutation (E693G) causes Alzheimer's disease by enhanced Abeta protofibril formation. Nat. Neurosci. 4, 887–893.

    Article  PubMed  CAS  Google Scholar 

  29. Hardy J. and Selkoe D. J. (2002) The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353–356.

    Article  PubMed  CAS  Google Scholar 

  30. Canevari L., Abramov A. Y., and Duchen M. R. (2004) Toxicity of amyloid beta peptide: tales of calcium, mitochondria, and oxidative stress. Neurochem. Res. 29, 637–650.

    Article  PubMed  CAS  Google Scholar 

  31. Bondy S. C., Guo-Ross S. X., and Truong A. T. (1998) Promotion of transition metal-induced reactive oxygen species formation by beta-amyloid. Brain Res. 799, 91–96.

    Article  PubMed  CAS  Google Scholar 

  32. Lynch T., Cherny R. A., and Bush A. I. (2000) Oxidative processes in Alzheimer's disease: the role of abeta-metal interactions. Exp. Gerontol. 35, 445–451.

    Article  PubMed  CAS  Google Scholar 

  33. Alexandrov P. N., Zhao Y., Pogue A. I., et al. (2005) Synergistic effects of iron and aluminum on stress-related gene expression in primary human neural cells. J. Alzheimers Dis. 8, 117–127.

    PubMed  CAS  Google Scholar 

  34. Caspersen C., Wang N., Yao J., et al. (2005) Mitochondrial Abeta: a potential focal point for neuronal metabolic dysfunction in Alzheimer's disease. FASEB J. 19, 2040, 2041.

    PubMed  CAS  Google Scholar 

  35. Rodrigues C. M., Sola S., Brito M. A., Brondino C. D., Brites D., and Moura J. J. (2001) Amyloid beta-peptide disrupts mitochondrial membrane lipid and protein structure: protective role of tauroursodeoxycholate. Biochem. Biophys. Res. Commun. 281, 468–474.

    Article  PubMed  CAS  Google Scholar 

  36. Morais Cardoso S., Swerdlow R. H., and Oliveira C. R. (2002) Induction of cytochrome c-mediated apoptosis by amyloid beta 25–35 requires functional mitochondria. Brain Res. 931, 117–125.

    Article  PubMed  CAS  Google Scholar 

  37. Nedergaard M., Ransom B., and Goldman S. A. (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci. 26, 523–530.

    Article  PubMed  CAS  Google Scholar 

  38. Blasko I., Stampfer-Kountchev M., Robatscher P., Veerhuis R., Eikelenboom P., and Grubeck-Loebenstein B. (2004) How chronic inflammation can affect the brain and support the development of Alzheimer's disease in old age: the role of microglia and astrocytes. Aging Cell 3, 169–176.

    Article  PubMed  CAS  Google Scholar 

  39. Nagele R. G., Wegiel J., Venkataraman V., Imaki H., Wang K. C., and Wegiel J. (2004) Contribution of glial cells to the development of amyloid plaques in Alzheimer's disease. Neurobiol. Aging 25, 663–674.

    Article  PubMed  CAS  Google Scholar 

  40. Johnstone M., Gearing A. J., and Miller K. M. (1999) A central role for astrocytes in the inflammatory response to beta-amyloid; chemokines, cytokines and reactive oxygen species are produced. J. Neuroimmunol. 93, 182–193.

    Article  PubMed  CAS  Google Scholar 

  41. Koehler R. C., Gebremedhin D., and Harder D. R. (2006) Role of astrocytes in cerebrovascular regulation. J. Appl. Physiol. 100, 307–317.

    Article  PubMed  CAS  Google Scholar 

  42. Zonta M., Angulo M. C., Gobbo S., et al. (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat. Neurosci. 6, 43–50.

    Article  PubMed  CAS  Google Scholar 

  43. Cui J. G., Kuroda H., Chandrasekharan N. V., et al. (2004) Cyclooxygenase-3 gene expression in Alzheimer hippocampus and in stressed human neural cells. Neurochem. Res. 29, 1731–1737.

    Article  PubMed  CAS  Google Scholar 

  44. Pellerin L. (2005) How astrocytes feed hungry neurons. Mol. Neurobiol. 32, 59–72.

    Article  PubMed  CAS  Google Scholar 

  45. Benzing W. C., Wujek J. R., Ward E. K., et al. (1999) Evidence for glial-mediated inflammation in aged APP (SW) transgenic mice. Neurobiol. Aging 20, 581–589.

    Article  PubMed  CAS  Google Scholar 

  46. Blasko I., Marx F., Steiner E., Hartmann T., and Grubeck-Loebenstein B. (1999) TNFalpha plus IFNgamma induce the production of Alzheimer beta-amyloid peptides and decrease the secretion of APPs. FASEB J. 13, 63–68.

    PubMed  CAS  Google Scholar 

  47. Blasko I., Veerhuis R., Stampfer-Kountchev M., Saurwein-Teissl M., Eikelenboom P., and Grubeck-Loebenstein B. (2000) Costimulatory effects of interferon-gamma and interleukin-1beta or tumor necrosis factor alpha on the synthesis of Abeta1–40 and Abeta1–42 by human astrocytes. Neurobiol. Dis. 7, 682–689.

    Article  PubMed  CAS  Google Scholar 

  48. McGeer P. L. and McGeer E. G. (2002) Local neuroinflammation and the progression of Alzheimer's disease. J. Neurovirol 8, 529–538.

    Article  PubMed  CAS  Google Scholar 

  49. Lindberg C., Selenica M. L., Westlind-Danielsson A., and Schultzberg M. (2005) Beta-amyloid protein structure determines the nature of cytokine release from rat microglia. J. Mol. Neurosci. 27, 1–12.

    Article  PubMed  CAS  Google Scholar 

  50. Rogers J., Strohmeyer R., Kovelowski C. J., and Li R. (2002) Microglia and inflammatory mechanisms in the clearance of amyloid beta peptide. Glia 40, 260–269.

    Article  PubMed  Google Scholar 

  51. Bard F., Cannon C., Barbour R., et al. (2000) Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat. Med. 6, 916–919.

    Article  PubMed  CAS  Google Scholar 

  52. Jantzen P. T., Connor K. E., DiCarlo G., et al. (2002) Microglial activation and beta-amyloid deposit reduction caused by a nitric oxide-releasing nonsteroidal anti-inflammatory drug in amyloid precursor protein plus presenilin-1 transgenic mice. J. Neurosci. 22, 2246–2254.

    PubMed  CAS  Google Scholar 

  53. Shen Q., Goderie S. K., Jin L., et al. (2004) Endothelial cells stimulate self-renewal and exp and neurogenesis of neural stem cells. Science 304, 1338–1340.

    Article  PubMed  CAS  Google Scholar 

  54. Louissaint A., Jr., Rao S., Leventhal C., and Goldman S. A. (2002) Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Neuron 34, 945–960.

    Article  PubMed  CAS  Google Scholar 

  55. Honma Y., Araki T., Gianino S. et al. (2002) Artemin is a vascular-derived neurotropic factor for developing sympathetic neurons. Neuron 35, 267–282.

    Article  PubMed  CAS  Google Scholar 

  56. Koistinaho M. and Koistinaho J. (2005) Interactions between Alzheimer's disease and cerebral ischemia—focus on inflammation. Brain Res. Brain Res. Rev. 48, 240–250.

    Article  PubMed  CAS  Google Scholar 

  57. Zlokovic B. V., Deane R., Sallstrom J., Chow N., and Miano J. M. (2005) Neurovascular pathways and Alzheimer amyloid beta-peptide. Brain Pathol. 15, 78–83.

    Article  PubMed  CAS  Google Scholar 

  58. Tanzi R. E., Moir R. D., and Wagner S. L. (2004) Clearance of Alzheimer's Abeta peptide: the many roads to perdition. Neuron 43, 605–608.

    PubMed  CAS  Google Scholar 

  59. Lukiw W. J., Pappolla M., Pelaez R. P., and Bazan N. G. (2005) Alzheimer's disease—a dysfunction in cholesterol and lipid metabolism. Cell. Mol. Neurobiol. 25, 475–483.

    Article  PubMed  CAS  Google Scholar 

  60. Alexandroy P., Cui J. G., Zhao Y., and Lukiw W. J. (2005) 24S-hydroxycholesterol induces inflammatory gene expression in primary human neural cells. Neuroreport 16, 909–913.

    Article  Google Scholar 

  61. de la Torre J. C. (2002) Alzheimer disease as a vascular disorder: nosological evidence. Stroke 33, 1152–1162.

    Article  PubMed  Google Scholar 

  62. Grammas P. and Ovase R. (2001) Inflammatory factors are elevated in brain microvessels in Alzheimer's disease. Neurobiol. Aging 22, 837–842.

    Article  PubMed  CAS  Google Scholar 

  63. Grammas P., Ottman T., Reimann-Philipp U., Larabee J., and Weigel P. H. (2004) Injured brain endothelial cells release neurotoxic thrombin. J. Alzheimers Dis. 6, 275–281.

    PubMed  CAS  Google Scholar 

  64. Christov A., Ottman J. T., and Grammas P. (2004) Vascular inflammatory, oxidative and protease-based processes: implications for neuronal cell death in Alzheimer's disease. Neurol. Res. 26, 540–546.

    Article  PubMed  CAS  Google Scholar 

  65. Bazan N. G., and Lukiw W. J. (2002) Cyclooxygenase-2 and presenilin-1 gene expression induced by interleukin-1beta and amyloid beta 42 peptide is potentiated by hypoxia in primary human neural cells. J. Biol. Chem. 277, 30,359–30,367.

    Article  CAS  Google Scholar 

  66. Liao Y. F., Wang B. J., Cheng H. T., Kuo L. H., and Wolfe M. S. (2004) Tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma stimulate gamma-secretase-mediated cleavage of amyloid precursor protein through a JNK-dependent MAPK pathway. J. Biol. Chem. 279, 49,523–49,532.

    CAS  Google Scholar 

  67. Thompson P.M., Hayashi K.M., Sowell E.R., et al. (2004) Mapping cortical change in Alzheimer's disease, brain development, and schizophrenia. Neuroimage 23(Suppl 1), S2-S18.

    Article  PubMed  Google Scholar 

  68. Alexandrov P.N., Cui J.G., and Lukiw W. J. (2006) Hypoxia-sensitive domain in the human cytosolic phospholipase A2 promoter. Neuroreport 17, 303–307.

    Article  PubMed  CAS  Google Scholar 

  69. Borenstein A.R., Copenhaver C.I., and Mortimer J.A. (2006) Early-life risk factors for Alzheimer disease. Alzheimer Dis. Assoc. Disord. 20, 63–72.

    Article  PubMed  Google Scholar 

  70. Knopman D.S. (2006) Dementia and cerebrovascular disease. Mayo Clin. Proc. 81, 223–230.

    Article  PubMed  Google Scholar 

  71. Griffin W.S. (2006) Inflammation and neurodegenerative diseases. Am. J. Clin. Nutr. 83, 470S-474S.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter J. Lukiw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Cui, JG. & Lukiw, W.J. Natural secretory products of human neural and microvessel endothelial cells. Mol Neurobiol 34, 181–192 (2006). https://doi.org/10.1385/MN:34:3:181

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:34:3:181

Index Entries

Navigation