Skip to main content
Log in

Myelin-associated glycoprotein-mediated signaling in central nervous system pathophysiology

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The myelin-associated glycoprotein (MAG) is a type I membrane-spanning protein expressed exclusively in oligoden drocytes and Schwann cells. It has two generally known pathophysiological roles in the central nervous system (CNS): maintenance of myelin integrity and inhibition of CNS axonal regeneration. The subtle CNS phenotype resulting from genetic ablation of MAG expression has made mechanistic analysis of its functional role in these difficult. However, the past few years have brought some major revelations, particularly in terms of mechanisms of MAG signaling through the Nogo-66 receptor (NgR) complex. Although apparently converging through NgR, a readily noticeable fact is that the neuronal growth inhibitory effect of MAG differs from that of Nogo-66. This may result from the influence of coreceptors in the form of gangliosides or from MAG-specific neuronal receptors such as NgR2. MAG has several other neuronal binding partners, and some of these may modulate its interaction with the NgR complex or downstream signaling. This article discusses new findings in MAG-forward and-reverse signaling and its role in CNS pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lai C., Brow M. A., Nave K. A., et al. (1987) Two forms of 1B236/myelin-associated glycoprotein, a cell adhesion molecule for postnatal neural development, are produced by alternative splicing. Proc. Natl. Acad. Sci. USA. 84, 4337–4341.

    Article  PubMed  CAS  Google Scholar 

  2. Pedraza L., Frey A. B., Hempstead B. L., Colman D. R., and Salzer J. L. (1991) differential expression of MAG isoforms during development. J. Neurosci Res. 29, 141–148.

    Article  PubMed  CAS  Google Scholar 

  3. Miescher G. C., Lutzelschwab R., Erne B., Ferracin F., Huber S., and Steck A. J. (1997) Reciprocal expression of myelin-associated glycoprotein splice variants in the adult human peripheral and central nervous systems. Mol. Brain Res. 52, 299–306.

    Article  PubMed  CAS  Google Scholar 

  4. Crocker P. R. (2002) Siglecs: sialic-acid-binding immunoglobulin-like lectins in cell-cell interactions and signalling. Curr. Opin. Struct. Biol. 12, 609–615.

    Article  PubMed  CAS  Google Scholar 

  5. DeBellard M. E., Tang S., Mukhopadhyay G., Shen Y. J., and Fiblin M. T. (1996) Myelin-associated glycoprotein inhibits axonal regeneration from a variety of neurons via interaction with a sialogly coprotein. Mol. Cell Neurosci. 7, 89–101.

    Article  PubMed  CAS  Google Scholar 

  6. Johnson P. W., Abramow-Newerly W., Seilheimer B., et al. (1989) Recombinant myelin-associated glycoprotein confers neural adhesion and neurite outgrowth function. Neuron 3, 377–385.

    Article  PubMed  CAS  Google Scholar 

  7. McKerracher L., David S., Jackson D. L., Kottis V., Dunn R. J., and Braun P. E. (1994) Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron 13, 805–811.

    Article  PubMed  CAS  Google Scholar 

  8. Mukhopadhyay G., Doherty P., Walsh F. S., Crocker P. R., and Filbin M. T. (1994) A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron 13, 757–767.

    Article  PubMed  CAS  Google Scholar 

  9. Li M., Shibata A., Li C., Braun P. E., et al. (1996) Myelin-associated glycoprotein inhibits neurite/axon growth and causes growth cone collapse. J. Neurosci. Res. 46, 404–414.

    Article  PubMed  CAS  Google Scholar 

  10. Tang S., Woodhall R. W., Shen Y. J., et al. (1997) Soluble myelin-associated glycoprotein (MAG) found in vivo inhibits axonal regeneration Mol. Cell Neurosci. 9, 333–346.

    Article  PubMed  CAS  Google Scholar 

  11. Tang S., Qui J., Nikulina E., and Filbin M. T. (2001) Soluble myelin-associated glycoprotein released from damaged white matter inhibits axonal regeneration. Mol. Cell Neurosci. 18, 259–269.

    Article  PubMed  CAS  Google Scholar 

  12. Bartsch U., Bandtlow C. E., Schnell L., et al. (1995) Lack of evidence that myelin-associated glycoprotein is a major inhibitor of axonal regeneration in the CNS. Neuron 15, 1375–1381.

    Article  PubMed  CAS  Google Scholar 

  13. Schachner M. and Bartsch U. (2000) Multiple functions of myelin-associated glycoprotein MAG (siglec-4a) in formation and maintenance of myelin. Glia 29, 154–165.

    Article  PubMed  CAS  Google Scholar 

  14. Umemori H., Sato S., Yagi T., Aizawa S., and Yamamoto T. (1994) Initial events of myelination involve Fyn tyrosine kinase signalling. Nature 367, 572–576.

    Article  PubMed  CAS  Google Scholar 

  15. Marta C. B., Taylor C. M., Cheng S., Quarles R. H., Bansal R., and Pfeiffer S. E. (2004) Myelin associated glycoproteion cross-linking triggers its partitioning into lipid rats, specific signaling events and cytoskeletal rearrangements in oligodendrocytes. Neuron Glia Biol.. 1, 35–46.

    Article  PubMed  Google Scholar 

  16. Fujita N., Kemper A., Dupree J., et al. (1998) The cytoplasmic domain of the large myelin-associated glycoprotein isoform is needed for proper CNS but not peripheral nervous system myelination. J. Neurosci. 18, 1970–1978.

    PubMed  CAS  Google Scholar 

  17. Jaramillo M. L., Afar D. E., Almazan G., and Bell J. C. (1994) Identification of tyrosine 620 as the major phosphorylation site of myelin-associated glycoprotein and its implication in interacting with signaling molecules. J. Biol. Chem. 269, 27,240–27,245.

    CAS  Google Scholar 

  18. Biffiger K., Bartsch S., Montag D., Aguzzi A, Schachner M., and Bartsch U. (2000) Severe hypomyelination of the murine CNS in the absence of myelin-associated glycoprotein and fyn tyrosine kinase. J. Neurosci. 20, 7430–7437.

    PubMed  CAS  Google Scholar 

  19. Fournier A. E., GrandPre T., and Strittmatter S. M. (2001) Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature 409, 341–346.

    Article  PubMed  CAS  Google Scholar 

  20. Liu B. P., Fournier A., GrandPre T., and Strittmatter S. M. (2002) Myelin-associated glycoprotein as a functional ligand for the Nogo-66 receptor. Science 297, 1190–1193.

    Article  PubMed  CAS  Google Scholar 

  21. Domeniconi M., Cao Z., Spencer T., et al. (2002) Myelin-associated glycoprotein interacts with the Nogo66 receptor to inhibit neurite outgrowth. Neuron 35, 283–290.

    Article  PubMed  CAS  Google Scholar 

  22. Fournier A. E., GrandPre T., Gould G., Wang X., and Strittmatter S. M. (2002) Nogo and the Nogo-66 receptor. Prog. Brain Res. 137, 361–369.

    PubMed  CAS  Google Scholar 

  23. Schwab M. E. (2004) Nogo and axon regeneration. Curr. Opin. Neurobiol. 14, 118–124.

    Article  PubMed  CAS  Google Scholar 

  24. Wang K. C., Kim J. A., Sivasankaran R., Segal R., and He Z. (2002) p75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature 420, 74–78.

    Article  PubMed  CAS  Google Scholar 

  25. Wong S. T., Henley J. R., Kanning K. C., Huang K. H., Bothwell M., and Poo M. M. (2002) A p75(NTR) and Nogo receptor complex mediates repulsive signaling by myelin-associated glycoprotein. Nat. Neurosci. 5, 1302–1308.

    Article  PubMed  CAS  Google Scholar 

  26. Shao Z., Browning J. L., Lee X., et al. (2005) TAJ/TROY, an orphan TNF receptor family member, binds Nogo-66 receptor 1 and regulates axonal regeneration. Neuron 45, 353–359.

    Article  PubMed  CAS  Google Scholar 

  27. Park J. B., Yiu G., Kaneko S., et al (2005) A TNF receptor family member, TROY, is a coreceptor with Nogo receptor in mediating the inhibitory activity of myelin inhibitors. Neuron 45, 345–351.

    Article  PubMed  CAS  Google Scholar 

  28. Mi S., Lee X., Shao Z., et al. (2004) LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat. Neurosci. 7, 221–228.

    Article  PubMed  CAS  Google Scholar 

  29. Niederost B., Oertle T., Fritsche J., McKinney R. A., and Bandtlow C. E. (2002) Nogo-A and myelin-associated glycoprotein mediate neurite growth inhibition by antagonistic regulation of RhoA and Racl. J. Neurosci. 22, 10,368–10,376.

    CAS  Google Scholar 

  30. Trapp B. D. (1990) Myelin-associated glycoprotein. Location and potential functions. Ann NY Acad Sci. 605, 29–43.

    Article  PubMed  CAS  Google Scholar 

  31. Collins B. E., Yang L. J., Mukhopadhyay G., et al. (1997) Sialic acid specificity of myelin-associated glycoprotein binding. J. Biol. Chem. 272, 1248–1255.

    Article  PubMed  CAS  Google Scholar 

  32. Schnaar R. L., Collins B. E., Wright L. P., et al. (1998) Myelin-associated glycoprotein binding to gangliosides. Structural specificity and functional implications. Ann. NY Acad. Sci. 845, 92–105.

    Article  PubMed  CAS  Google Scholar 

  33. Tang S., Shen Y. J., DeBellard M. E., et al. (1997) Myelin-associated glycoprotein interacts with neurons via a sialic acid binding site at ARG118 and a distinct neurite inhibition site. J. Cell Biol. 138, 1355–1366.

    Article  PubMed  CAS  Google Scholar 

  34. Yang L. J., Zeller C. B., Shaper N. L., et al. (1996) Gangliosides are neuronal ligands for myelin-associated glycoprotein. Proc. Natl. Acad. Sci. USA 93, 814–818.

    Article  PubMed  CAS  Google Scholar 

  35. Vyas A. A., Patel H. V., Fromholt S. E., et al. (2002) Gangliosides are functional nerve cell ligands for myelin-associated glycoprotein (MAG), an inhibitor of nerve regeneration. Proc. Natl. Acad. Sci. USA 99, 8412–8417.

    Article  PubMed  CAS  Google Scholar 

  36. Vinson M., Strijbos P. J., Rowles A., et al. (2001) Myelin-associated glycoprotein interacts with ganglioside GT1b. A mechanism for neurite outgrowth inhibition. J. Biol. Chem. 276, 20,280–20,285.

    Article  CAS  Google Scholar 

  37. Guan K. L. and Rao Y. (2003) Signalling mechanisms mediating neuronal responses to guidance cues. Nat. Rev. Neurosci. 4, 941–956.

    PubMed  CAS  Google Scholar 

  38. Yamashita T., Higuchi H., and Tohyama M. (2002) The p75 receptor transduces the signal from myelin-associated glycoprotein to Rho. J. Cell Biol. 157, 565–570.

    Article  PubMed  CAS  Google Scholar 

  39. Liu Y., Wada R., Kawai H., et al. (1999) A genetic model of substrate deprivation therapy for a glycosphingolipid storage disorder. J. Clin. Invest. 103, 497–505.

    Article  PubMed  CAS  Google Scholar 

  40. Fujitani M., Kawai H., Proia R. L., Kashiwagi A., Yasuda H., and Yamashita T. (2005) Binding of soluble myelin-associated glycoprotein to specific gangliosides induces the association of p75NTR to lipid rafts and signal transduction. J. Neurochem. 94, 15–21.

    Article  PubMed  CAS  Google Scholar 

  41. Kawai H., Allende M. L., Wada R., et al. (2001) Mice expressing only monosialoganglioside GM3 exhibit lethal audiogenic seizures. J. Biol. Chem. 276, 6885–6888.

    Article  PubMed  CAS  Google Scholar 

  42. Olofsson B. (1999) Rho guanine dissociation inhibitors: pivotal molecules in cellular signalling. Cell Signal 11, 545–554.

    Article  PubMed  CAS  Google Scholar 

  43. Jung K. M., Tan S., Landman N., et al. (2003) Regulated intramembrane proteolysis of the p75 neurotrophin receptor modulates its association with the TrkA receptor. J. Biol. Chem. 278, 42,161–42,169.

    CAS  Google Scholar 

  44. Kanning K. C., Hudson M., Amieux P. S., Wiley J. C., Bothwell M., and Schecterson L. C. (2003) Proteolytic processing of the p75 neurotrophin receptor and two homologs generates C-terminal fragments with signaling capability. J. Neurosci. 23(13), 5425–5436.

    PubMed  CAS  Google Scholar 

  45. Domeniconi M., Zampieri N., Spencer T., et al. (2005) MAG induces regulated intramembrane proteolysis of the p75 neurotrophin receptor to inhibit neurite outgrowth. Neuron 46, 849–855.

    Article  PubMed  CAS  Google Scholar 

  46. Yamashita T. and Tohyama M. (2003) The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nat. Neurosci. 6, 461–467.

    PubMed  CAS  Google Scholar 

  47. DeBellard M. E., Tang S., Mukhopadhyay G., Shen Y. J., and Filbin M. T. (1996) Myelin-associated glycoprotein inhibits axonal regeneration from a variety of neurons via interaction with a sialoglycoprotein. Mol. Cell Neurosci. 7, 89–101.

    Article  PubMed  CAS  Google Scholar 

  48. De Bellard M. E. and Filbin M. T. (1999) Myelin-associated glycoprotein, MAG, selectively binds several neuronal proteins. J. Neurosci. Res. 56, 213–218.

    Article  PubMed  Google Scholar 

  49. Lauren, J., Airaksinen M. S., Saarma M., and Timmusk T. (2003) Two novel mammalian Nogo receptor homologs differentially expressed in the central and peripheral nervous systems. Mol. Cell Neurosci. 24, 581–594.

    Article  PubMed  CAS  Google Scholar 

  50. Pignot V., Hein A. E., Barske C, et al. (2003) Characterization of two novel proteins, NgRH1 and NgRH2, structurally and biochemically homologous to the Nogo-66 receptor. J. Neurochem. 85, 717–728.

    Article  PubMed  CAS  Google Scholar 

  51. Barton W. A., Liu B. P., Tzvetkova D., et al. (2003) Structure and axon outgrowth inhibitor binding of the Nogo-66 receptor and related proteins EMBO J. 22, 3291–3302.

    Article  PubMed  CAS  Google Scholar 

  52. Venkatesh K., Chivatakarn O., Lee H., et al. (2005) The Nogo-66 receptor homolog NgR2 is a sialic acid-dependent receptor selective for myelin-associated glycoprotein. J. Neurosci. 25, 808–822.

    Article  PubMed  CAS  Google Scholar 

  53. Vinson M., Rausch O., Maycox P. R., et al. (2003) Lipid rafts mediate the interaction between myelin-associated glycoprotein (MAG) on myelin and MAG-receptors on neurons. Mol. Cell Neurosci. 22, 344–352.

    Article  PubMed  CAS  Google Scholar 

  54. Sheikh K. A., Sun J., Liu Y., et al. (1999) Mice lacking complex gangliosides develop Wallerian degeneration and myelination defects. Proc. Natl. Acad. Sci. USA 96, 7532–7537.

    Article  PubMed  CAS  Google Scholar 

  55. Pan B., Fromholt S. E., Hess E. J., et al. (2005) Myelin-associated glycoprotein and complementary axonal ligands, gangliosides, mediate axon stability in the CNS and PNS: Neuropathology and behavioral deficits in single-and double-null mice. Exp. Neurol. 195, 208–217.

    Article  PubMed  CAS  Google Scholar 

  56. Mi S., Miller R. H., Lee X., et al. (2005) LINGO-1 negatively regulates myelination by oligoden-drocytes. Nat. Neurosci. 8, 745–751.

    Article  PubMed  CAS  Google Scholar 

  57. Giordana M. T., Piccinini M., Palmucci L., et al. (2005) Myelin-associated glycoprotein is altered in a familial late-onset orthochromatic leukodystrophy. Brain Pathol. 15, 116–123.

    Article  PubMed  CAS  Google Scholar 

  58. Fischer D., He Z., and Benowitz L. I. (2004) Counteracting the Nog receptor enhances optic nerve regeneration if retinal ganglion cells are in an active growth state. J. Neurosci. 24, 1646–1651.

    Article  PubMed  CAS  Google Scholar 

  59. Lee J. K., Kim J. E., Sivula M., and Strittmatter S. M. (2004) Nogo receptor antagonism promotes stroke recovery by enhancing axonal plasticity. J. Neurosci. 24, 6209–6217.

    Article  PubMed  CAS  Google Scholar 

  60. Ishiguro H., Inuzuka T., Fujita N. et al. (1993) Expression of the large myelin-associated glycoprotein isoform in rat oligodendrocytes around cerebral infarcts. Mol. Chem. Neuropathol. 20, 173–179.

    PubMed  CAS  Google Scholar 

  61. Mingorance A., Fontana X., Soriano E., and Del Rio J. A. (2005) Overexpression of myelin-associated glycoprotein after axotomy of the perforant pathway. Mol. Cell Neurosci. 29, 471–483.

    Article  PubMed  CAS  Google Scholar 

  62. Irving E. A., Vinson M., Rosin C., et al. (2005) Identification of neuroprotective properties of anti-MAG antibody: a novel approach for the treatment of stroke? J. Cereb. Blood Flow Metab. 25, 98–107.

    Article  PubMed  CAS  Google Scholar 

  63. Tkachev D., Mimmack M. L., Ryan M. M., et al. (2003) Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 362, 798–805.

    Article  PubMed  CAS  Google Scholar 

  64. Stewart D. G. and Davis K. L. (2004) Possible contributions of myelin and oligodendrocyte dysfunction to schizphrenia. Int. Rev. Neurobiol. 59, 381–424.

    Article  PubMed  CAS  Google Scholar 

  65. Yang Y. F., Qin W., Shugart Y. Y., et al. (2005) Possible association of the MAG locus with schizopherenia in a Chinese Han cohort of family trios. Schizophr. Res. 75, 11–19.

    Article  PubMed  CAS  Google Scholar 

  66. Wan C., Yang Y., Feng G., et al. (2005) Polymorphims of myelin-associated glycoprotein gene are associated with schizophrenia in the Chinese Han population. Neurosci. Lett. 388, 126–131.

    PubMed  CAS  Google Scholar 

  67. Hasegawa, Y., Fujitani M., Hata K., Tohyama M., Yamagishi S., and Yamashita T. (2004) Promotion of axon regeneration by myelin-assocated glycoprotein and Nogo through divergent signals downstream of Gi/G. J. Neurosci. 24, 6826–6832.

    Article  PubMed  CAS  Google Scholar 

  68. Sivasankaran R., Pei J., Wang K. C., et al. (2004) PKC mediates inhibitory effects of myelin and chondroitin sulfate proteoglycans on axonal regeneration. Nat. Neurosci. 7, 261–268.

    Article  PubMed  CAS  Google Scholar 

  69. Henley J. R., Huang K. H., Wang D., and Poo M. M. (2004) Calcium mediates bidirectional growth cone turning induced by myelin-associated glycoprotein. Neuron 44, 909–916.

    Article  PubMed  CAS  Google Scholar 

  70. Song H., Ming G., He Z., et al. (1998) Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science 281, 1515–1518.

    Article  PubMed  CAS  Google Scholar 

  71. Neumann S., Bradke F., Tessier-Lavigne M., and Basbaum A. I. (2002) Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation. Neuron 34, 885–893.

    Article  PubMed  CAS  Google Scholar 

  72. Qiu J., Cai D., Dai H. et al. (2002) Spinal axon regeneration induced by elevation of cyclic AMP. Neuron 34, 895–903.

    Article  PubMed  CAS  Google Scholar 

  73. Cai D., Deng K., Mellado W., Lee J., Ratan R. R., and Filbin M. T. (2002) Arginase I and polyamines act downstream from cyclic AMP in overcoming inhibition of axonal growth MAG and myelin in vitro. Neuron 35, 711–719.

    Article  PubMed  CAS  Google Scholar 

  74. Filbin M. T. (2003) Myelin-associated inhibitors of axonal regeneration in the mammalian CNS. Nat. Rev. Neurosci. 4, 703–713.

    Article  PubMed  CAS  Google Scholar 

  75. Liang X., Draghi N. A., and Resh M. D. (2004) Signaling from integrins to Fyn to Rho family GTPases regulates morphologic differentiation of oligodendrocytes. J. Neurosci. 24, 7140–7149.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bor Luen Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Aulia, S. & Tang, B.L. Myelin-associated glycoprotein-mediated signaling in central nervous system pathophysiology. Mol Neurobiol 34, 81–91 (2006). https://doi.org/10.1385/MN:34:2:81

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:34:2:81

Index Entries

Navigation