Skip to main content
Log in

Multiple signals regulate axon regeneration through the nogo receptor complex

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Several myelin-derived proteins have been identified as components of central nervous system (CNS) myelin, which prevents axonal regeneration in the adult vertebrate CNS. The discovery of the receptor for these proteins was a major step toward understanding the failure of axon regeneration. The receptor complex consists of at least three elements: the p75 receptor (p75NTR), the Nogo receptor and LINGO-1. Downstream from the receptor complex, RhoA activation has been shown to be a key element of the signaling mechanism of these proteins. Rho activation arrests axon growth, and blocking Rho activation promotes axon regeneration in vivo. Recent studies have identified conventional protein kinase C as an additional necessary component for axon growth inhibition. Possible crosstalk downstream of these signals should be explored to clarify all the inhibitory signals and may provide an efficient molecular target against injuries to the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. David S. and Aguayo, A. J. (1981) Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 214, 931–933.

    Article  PubMed  CAS  Google Scholar 

  2. Berry M. (1982) Post-injury myelin-breakdown products inhibit axonal growth: An hypothesis to explain the failure of axonal regeneration in the mammalian central nervous system. Bibliotheca Anatomica 23, 1–11.

    PubMed  Google Scholar 

  3. Schwab M. E. and Thoenen H. (1985) Dissociated neurons regenerate into sciatic but not optic nerve explants in culture irrespective of neurotrophic factors. J. Neurosci. 5, 2415–2423.

    PubMed  CAS  Google Scholar 

  4. Spillmann A. A., Bandtlow C. E., Lottspeich F., Keller F., and Schwab M. E. (1998) Identification and characterization of a bovine neurite growth inhibitor (bNI-220). J. Biol. Chem. 273, 19,283–19,293.

    CAS  Google Scholar 

  5. Prinjha R., Moore S. E., Vinson M., et al. (2000) Inhibitor of neurite outgrowth in humans. Nature, 403, 383,384.

    Article  PubMed  CAS  Google Scholar 

  6. GrandPre T., Nakamura F., Vartanian T., and Strittmatter S. M. (2000) Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 403, 439–444.

    Article  PubMed  CAS  Google Scholar 

  7. Chen M. S., Huber A. B., van der Haar M. E., et al. (2000) Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403, 434–439.

    Article  PubMed  CAS  Google Scholar 

  8. Fournier A. E., GrandPre T., and Strittmatter S. M. (2001) Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature 409, 341–346.

    Article  PubMed  CAS  Google Scholar 

  9. Huber A. B., Weinmann O., Brosamle C., Oertle T., and Schwab M. E. (2002) Patterns of Nogo mRNA and protein expression in the developing and adult rat and after CNS lesions. J. Neurosci. 22, 3553–3567.

    PubMed  CAS  Google Scholar 

  10. McKerracher L., David S., Jackson D. L., Kottis V., Dunn R. J., and Braun P. E. (1994) Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron 13, 805–811.

    Article  PubMed  CAS  Google Scholar 

  11. Mukhopadhyay G., Doherty P., Walsh F. S., Crocker P. R., and Filbin M. T. (1994) A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron 13, 757–767.

    Article  PubMed  CAS  Google Scholar 

  12. Cai D., Qiu J., Cao Z., McAtee M., Bregman B. S., and Filbin M. T. (2001) Neuronal cyclic AMP controls the developmental loss in ability of axons to regenerate. J. Neurosci. 21, 4731–4739.

    PubMed  CAS  Google Scholar 

  13. Kottis V., Thibault P., Mikol D., et al. (2002) Oligodendrocyte-myelin glycoprotein (OMgp) is an inhibitor of neurite outgrowth. J. Neurochem. 82, 1566–1569.

    Article  PubMed  CAS  Google Scholar 

  14. Wang K. C., Koprivica V., Kim J. A., et al. (2002) Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 417, 941–944.

    Article  PubMed  CAS  Google Scholar 

  15. Fournier A. E., GrandPre T., and Strittmatter S. M. (2001) Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature 409, 341–346.

    Article  PubMed  CAS  Google Scholar 

  16. Josephson A., Trifunovski A., Widmer H. R., Widenfalk J., Olson L., and Spenger C. (2002) Nogo-receptor gene activity: cellular localization and developmental regulation of mRNA in mice and humans. J. Comp. Neurol. 453, 292–304.

    Article  PubMed  CAS  Google Scholar 

  17. Wang X., Chun S. J., Treloar H., Vartanian T., Greer C. A., and Strittmatter S. M. (2002) Localization of Nogo-A and Nogo-66 receptor proteins at sites of axon-myelin and synaptic contact. J. Neurosci. 22, 5505–5515.

    PubMed  CAS  Google Scholar 

  18. Liu B. P., Fournier A., GrandPre T., and Strittmatter S. M. (2002) Myelin-associated glycoprotein as a functional ligand for the Nogo-66 receptor. Science 297, 1190–1193.

    Article  PubMed  CAS  Google Scholar 

  19. Domeniconi M., Cao Z., Spencer T., et al. (2002) Myelin-associated glycoprotein interacts with the Nogo66 receptor to inhibit neurite outgrowth. Neuron 35, 283–290.

    Article  PubMed  CAS  Google Scholar 

  20. GrandPre T., Li S., and Strittmatter S. M. (2002) Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature 417, 547–551.

    Article  PubMed  CAS  Google Scholar 

  21. Yamashita T., Higuchi H., and Tohyama M. (2002) The p75 receptor transduces the signal from myelin-associated glycoprotein to Rho. J. Cell Biol. 157, 565–570.

    Article  PubMed  CAS  Google Scholar 

  22. Wang K. C., Kim J. A., Sivasankaran R., Segal R., and He Z. (2002) p75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature 420, 74–78.

    Article  PubMed  CAS  Google Scholar 

  23. Wong S. T., Henley J. R., Kanning K. C., Huang K. H., Bothwell M., and Poo M. M. (2002) A p75(NTR) and Nogo receptor complex mediates repulsive signaling by myelin-associated glycoprotein. Nat. Neurosci. 5, 1302–1308.

    Article  PubMed  CAS  Google Scholar 

  24. Song X. Y., Zhong J. H., Wang X., and Zhou X. F. (2004) Suppression of p75NTR does not promote regeneration of injured spinal cord in mice. J. Neurosci. 14, 542–546.

    Article  Google Scholar 

  25. Yamashita T., Tucker K. L., and Barde Y. A. (1999) Neurotrophin binding to the p75 receptor modulates Rho activity and axonal outgrowth. Neuron 24, 585–593.

    Article  PubMed  CAS  Google Scholar 

  26. Mi S., Lee X., Shao Z., et al. (2004) LINGO-1 is a component of the NOGO-66 receptor/p75 signaling complex. Nat. Neurosci. 7, 221–228.

    Article  PubMed  CAS  Google Scholar 

  27. Lehmann M., Fournier A., Selles-Navarro I., et al. (1999) Inactivation of Rho signaling pathway promotes CNS axon regeneration. J. Neurosci. 19, 7537–7547.

    PubMed  CAS  Google Scholar 

  28. Yamashita T. and Tohyama M. (2003) The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nat. Neurosci. 6, 461–467.

    PubMed  CAS  Google Scholar 

  29. Sasaki T. and Takai Y. (1998) The Rho small G protein family-Rho GDI system as a temporal and spatial determinant for cytoskeletal control. Biochem. Biophys. Res. Commun. 245, 641–645.

    Article  PubMed  CAS  Google Scholar 

  30. Dergham P., Ellezam B., Essagian C., Avedissian H., Lubell W. D., and McKerracher L. (2002) Rho signaling pathway targeted to promote spinal cord repair. J. Neurosci. 22, 6570–6577.

    PubMed  CAS  Google Scholar 

  31. Fournier A. E., Takizawa B. T., and Strittmatter S. M. (2003) Rho kinase inhibition enhances axonal regeneration in the injured CNS. J. Neurosci. 23, 1416–1423.

    PubMed  CAS  Google Scholar 

  32. Koch G., Haberman B., Mohr C., Just I., and Aktories K. (1991) Interaction of mastoparan with the low molecular mass GTP-binding proteins rho/rac. FEBS Lett. 291, 336–340.

    Article  PubMed  CAS  Google Scholar 

  33. Ilag L. L., Rottenberger C., Liepinsh E., et al. (1999) Selection of a peptide ligand to the p75 neurotrophin receptor death domain and determination of its binding sites by NMR. Biochem. Biophys. Res. Commun. 255, 104–109.

    Article  PubMed  CAS  Google Scholar 

  34. Sivasankaran R., Pei J., Wang K. C., et al. (2004) PKC mediates inhibitory effects of myelin and chondroitin sulfate proteoglycans on axonal regeneration. Nat. Neurosci. 7, 261–268

    Article  PubMed  CAS  Google Scholar 

  35. Hasegawa Y., Fujitani M., Hata K., Tohyama M., Yamagishi S., and Yamashita, T. (2004) Promotion of axon regeneration by MAG and Nogo through divergent signals downstream of Gi/G. J. Neurosci. 24, 6826–6832.

    Article  PubMed  CAS  Google Scholar 

  36. Cai D., Shen Y., De Bellard M., Tang S., and Filbin M. T. (1999) Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism. Neuron 22, 89–101.

    Article  PubMed  CAS  Google Scholar 

  37. Dechant G. and Barde Y. A. (2002) The neurotrophin receptor p75(NTR): novel functions and implications for diseases of the nervous system. Nat. Neurosci. 5, 1131–1136.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihide Yamashita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamashita, T., Fujitani, M., Yamagishi, S. et al. Multiple signals regulate axon regeneration through the nogo receptor complex. Mol Neurobiol 32, 105–111 (2005). https://doi.org/10.1385/MN:32:2:105

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:32:2:105

Index Entries

Navigation