Skip to main content
Log in

Role of mitochondrial dysfunction and oxidative stress in the pathogenesis of selective neuronal loss in Wernicke’s encephalopathy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Thiamine deficiency results in Wernicke’s encephalopathy and is commonly encountered in chronic alcoholism, gastrointestinal diseases, and HIV AIDS. The earliest metabolic consequence of thiamine deficiency is a selective loss in activity of the thiamine diphosphate-dependent enzyme α-ketoglutarate dehydrogenase (α-KGDH), a rate-limiting tricarboxylic acid cycle enzyme. Thiamine deficiency is characterized neuropathologically by selective neuronal cell death in the thalamus, pons, and cerebellum. The cause of this region-selective neuronal loss is unknown, but mechanisms involving cellular energy failure, focal lactic acidosis, and NMDA receptor-mediated excitotoxicity have classically been implicated. More recently, evidence supports a role for oxidative stress. Evidence includes increased endothelial nitric oxide synthase, nitrotyrosine deposition, microglial activation, and lipid peroxidation. Reactive oxygen species production results in decreased expression of astrocytic glutamate transporters and decreased activities of α-KGDH, resulting in an amplification of cell death mechanisms in thiamine deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Harper C.G. and Butterworth R.F. (1997) Nutritional and metabolic disorders, in Greenfield’s Neuropathology, Graham D.I. and Lantos P.L. eds., Arnold, London, pp. 601–655.

    Google Scholar 

  2. Peters R.A. (1936) The biochemical lesion in vitamin B1 deficiency. Application of modern biochemical analysis in its diagnosis. Lancet 1, 1161–1164.

    Article  Google Scholar 

  3. Hécoux M. and Butterworth R.F. (1995) Regional alterations of thiamine phosphate esters and of thiamine diphosphate-dependent enzymes in relation to function in experimental Wernicke’s encephalopathy. Neurochem. Res. 20, 87–93.

    Article  Google Scholar 

  4. Butterworth R.F. and Hécoux M. (1989) Effect of pyrithiamine treatment and subsequent thiamine rehabilitation on regional cerebral amino acids and thiamine-dependent enzymes. J. Neurochem. 52, 1079–1084.

    Article  PubMed  CAS  Google Scholar 

  5. Butterworth R.F., Kril J.J., and Harper C. (1993) Thiamine-dependent enzyme changes in brain of alcoholics: relationship to Wernicke-Korsakoff Syndrome. Alcohol Clin. Exp. Res. 17, 1084–1088.

    Article  PubMed  CAS  Google Scholar 

  6. Parker W.D., Jr., Haas R., Stumpf D.A., Parks J., Eguren L.A., and Jackson C. (1984) Brain mitochondrial metabolism in experimental thiamine deficiency. Neurology 34, 1477–1481.

    PubMed  CAS  Google Scholar 

  7. Pannunzio P., Hazell A.S., Pannunzio M., Rama Rao K.V., and Butterworth R.F. (2000) Thiamine deficiency results in metabolic acidosis and energy failure in cerebellar granule cells: an in vitro model for the study of cell death mechanisms in Wernicke’s encephalopathy. J. Neurosci. Res. 62, 286–292.

    Article  PubMed  CAS  Google Scholar 

  8. Bettendorff L., Sluse F., Goessens G., Wins P., and Grisar T. (1995) Thiamine deficiency-induced partial necrosis and mitochondrial uncoupling in neuroblastoma cells are rapidly reversed by addition of thiamine. J. Neurochem. 65, 2178–2184.

    Article  PubMed  CAS  Google Scholar 

  9. Zhang S.X., Weilersbacher G.S., Henderson S.W., Corso T., Olney J.W., and Langlais P.J. (1995) Excitotoxic cytopathology, progression, and reversibility of thiamine deficiency-induced diencephalic lesions. J. Neuropathol. Exp. Neurol. 54, 255–267.

    PubMed  CAS  Google Scholar 

  10. Aikawa H., Watanabe I.S., Furuse T., et al. (1984) Low energy level in thiamine-deficient encephalopathy. J. Neuropathol. Exp. Neurol. 43, 276–287.

    Article  PubMed  CAS  Google Scholar 

  11. Hakim A.M. (1984) The induction and reversibility of cerebral acidosis in thiamine deficiency. Ann. Neurol. 16, 673–679.

    Article  PubMed  CAS  Google Scholar 

  12. Hazell A.S., Butterworth R.F., and Hakim A.M. (1993) Cerebral vulnerability is associated with selective increase in extracellular glutamate concentration in experimental thiamine deficiency. J. Neurochem. 61, 1155–1158.

    Article  PubMed  CAS  Google Scholar 

  13. Hazell A.S., Rao K.V., Danbolt N.C., Pow D.V., and Butterworth R.F. (2001) Selective downregulation of the astrocyte glutamate transporters GLT-1 and GLAST within the medial thalamus in experimental Wernicke’s encephalopathy. J. Neurochem. 78, 560–568.

    Article  PubMed  CAS  Google Scholar 

  14. Langlais P.J. and Mair R.G. (1990) Protective effects of the glutamate antagonist MK-801 on pyrithiamine-induced lesions and amino acid changes in rat brain. J. Neurosci. 10, 1664–1674.

    PubMed  CAS  Google Scholar 

  15. Todd K.G. and Butterworth R.F. (1998) Evaluation of the role of NMDA-mediated excitotoxicity in the selective neuronal loss in experimental Wernicke encephalopathy. Exp. Neurol. 149, 130–138.

    Article  PubMed  CAS  Google Scholar 

  16. Langlais P.J., Anderson G., Guo S.X., and Bondy S.C. (1997) Increased cerebral free radical production during thiamine deficiency. Metab. Brain Dis. 12, 137–143.

    PubMed  CAS  Google Scholar 

  17. Cullen K.M. and Halliday G.M. (1995) Mechanisms of cell death in cholinergic basal forebrain neurons in chronic alcoholics. Metab. Brain Dis. 10, 81–91.

    Article  PubMed  CAS  Google Scholar 

  18. Gibson G.E. and Zhang H. (2002) Interactions of oxidative stress with thiamine homeostasis promote neurodegeneration. Neurochem. Int. 40, 493–504.

    Article  PubMed  CAS  Google Scholar 

  19. Kruse M., Navarro D., Desjardins P., and Butterworth R.F. (2004) Increased brain endothelial nitric oxide synthase expression in thiamine deficiency: relationship to selective vulnerability. Neurochem. Int. 45, 49–56.

    Article  PubMed  CAS  Google Scholar 

  20. Todd K.G. and Butterworth R.F. (1999) Early microglial response in experimental thiamine deficiency: an immunohistochemical analysis. Glia 25, 190–198.

    Article  PubMed  CAS  Google Scholar 

  21. Collins G.H. (1967) Glial cell changes in the brain stem of thiamine-deficient rats. Am. J. Pathol. 50, 791–814.

    PubMed  CAS  Google Scholar 

  22. Robertson D.M., Wasan S.W., and Skinner D.B. (1968) Ultrastructure features of early brain stem lesions of thiamine-deficient rats. Am. J. Pathol. 52, 1081–1087.

    PubMed  CAS  Google Scholar 

  23. Tellez I. and Terry R.D. (1968) Fine structure of the early changes in the vestibular nuclei of the thiamine-deficient rat. Am. J. Pathol. 52, 777–794.

    PubMed  CAS  Google Scholar 

  24. Victor M., Adams R.D., and Collins G.H. (1989) The Wernicke-Korsakoff Syndrome and Related Neurologic Disorders Due to Alcoholism and Malnutrition, 2nd ed., F.A. Davies Philadelphia, pp. 61–110.

  25. Gehrmann J., Bonnehoh P., Miyazawa T., Hossmann K.A., and Kreutzberg G.W. (1992) Immunocytochemical study of an early microglial activation in ischemia. J. Cereb. Blood Flow Metab. 12, 257–269.

    PubMed  CAS  Google Scholar 

  26. Okeda R., Taki K., Ikari R., and Funata N. (1995) Vascular changes in acute Wernicke’s encephalopathy. Acta Neuropathol. (Berl.) 89, 420–424.

    CAS  Google Scholar 

  27. Calingasan N.Y., Huang P.L., Chun H.S., Fabian A., and Gibson G.E. (2000) Vascular factors are critical in selective neuronal loss in an animal model of impaired oxidative metabolism. J. Neuropathol. Exp. Neurol. 59, 207–217.

    PubMed  CAS  Google Scholar 

  28. Bolanos J.P. and Almeida A. (1999) Roles of nitric oxide in brain hypoxia-ischemia. Biochem. Biophys. Acta 1411, 415–436.

    Article  PubMed  CAS  Google Scholar 

  29. Estevez A.G., Spear N., Thompson J.A., et al. (1998) Nitric oxide-dependent production of cGMP supports the survival of rat embryonic motor neurons cultured with brain-derived neurotrophic factor. J. Neurosci. 18, 3708–3714.

    PubMed  CAS  Google Scholar 

  30. Matsushima K., MacManus J.P., and Hakim A.M. (1997) Apoptosis is restricted to the thalamus in thiamine-deficient rats. Neuroreport 8, 867–870.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger F. Butterworth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desjardins, P., Butterworth, R.F. Role of mitochondrial dysfunction and oxidative stress in the pathogenesis of selective neuronal loss in Wernicke’s encephalopathy. Mol Neurobiol 31, 17–25 (2005). https://doi.org/10.1385/MN:31:1-3:017

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:31:1-3:017

Index Entries

Navigation