Skip to main content
Log in

Experimental retinal reattachment

A new perspective

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In the feline model, retinal detachment initiates a cascade of changes that include photoreceptor-cell “deconstruction,” apoptotic death of some photoreceptors, neurite outgrowth from second-and third-order neurons, remodeling of photoreceptor synaptic terminals, and Müller-cell gliosis. We have previously shown that reattachment within 24 h halts or reverses many of these presumed detrimental changes. However, in patients with retinal detachments, reattachment cannot always be performed within this 24-h window. Moreover, recovery of vision following successful reattachment surgery in the macula is often imperfect. Here, we examine the ability of relatively long-term reattachment (28 d) to stop or reverse several cellular events that occur at 3 d of detachment. In contrast to earlier studies of reattachment, which focused on the regeneration of outer segments, we focus our attention here on other cellular events such as neuronal remodeling and gliosis. Some of these changes are reversed by reattachment, but reattachment itself appears to stimulate other changes that are not associated with detachment. The implications of these events for the return of vision are unknown, but they do indicate that simply reattaching the retina does not return the retina to its pre-detachment state within 28 d.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kusaka S., Toshino A., Ohashi Y., and Sakaue E. (1998) Long-term visual recovery after scleral buckling for macula-off retinal detachments. Jpn. J. Ophthalmol. 42, 218–222.

    Article  PubMed  CAS  Google Scholar 

  2. Fisher S.K. and Lewis G.P. (2003) Müller cell and neuronal remodeling in retinal detachment and reattachment and their potential consequences for visual recovery: a review and reconsideration of recent data. Vision Res. 43, 887–897.

    Article  PubMed  Google Scholar 

  3. Anderson D.H., Stern W.H., Fisher S.K., Erickson P.A., and Borgula G.A. (1983) Retinal detachment in the cat: the pigment epithelial-photoreceptor interface. Investig. Ophthalmol. Vis. Sci. 24, 906–926.

    CAS  Google Scholar 

  4. Erickson P.A., Fisher S.K., Anderson D.H., Stern W.H., and Borgula G.A. (1983) Retinal detachment in the cat: the outer nuclear and outer plexiform layers. Investig. Ophthalmol. Vis. Sci. 24, 927–942.

    CAS  Google Scholar 

  5. Cook B., Lewis G.P., Fisher S.K., and Adler R. (1995) Apoptotic photoreceptor degeneration in experimental retinal detachment. Investig. Ophthalmol. Vis. Sci. 36, 990–996.

    CAS  Google Scholar 

  6. Rex T.S., Fariss R.N., Lewis G.P., Linberg K.A., Sokal I., and Fisher S.K. (2002) A survey of molecular expression by photoreceptors after experimental retinal detachment. Investig. Ophthalmol. Vis. Sci. 43, 1234–1247.

    Google Scholar 

  7. Linberg K.A., Lewis G.P., Shaaw C., Rex T.S., and Fisher S.K. (2001) Distribution of S- and M- cones in normal and experimentally detached cat retina. J. Comp. Neurol. 430, 343–356.

    Article  PubMed  CAS  Google Scholar 

  8. Linberg K.A., Lewis G.P., Sakai T., Leitner W.P., and Fisher S.K. (2002) Experimental retinal detachment in the cone dominant ground squirrel retina: Morphology and basic immunocytochemistry. Vis. Neurosci. 19, 603–619.

    Article  PubMed  Google Scholar 

  9. Lewis G.P., Linberg K.A., and Fisher S.K. (1998) Neurite outgrowth from bipolar and horizontal cells following experimental retinal detachment. Investig. Ophthalmol. Vis. Sci. 39, 424–434.

    CAS  Google Scholar 

  10. Coblentz F.E., Lewis G.P., Radeke M.J., and Fisher S.K. (2003) Upregulation of GAP-43 in ganglion cells following retinal detachment. Exp. Eye Res. 76, 333–342.

    Article  PubMed  CAS  Google Scholar 

  11. Geller S.F., Lewis G.P., and Fisher S.K. (2001) FGFR1, signaling, and AP-1 expression following retinal detachment: reactive Müller and RPE cells. Investig. Ophthalmol. Vis. Sci. 42, 1363–1369.

    CAS  Google Scholar 

  12. Fisher S.K., Erickson P.A., Lewis G.P., and Anderson D.H. (1991) Intraretinal proliferation induced by retinal detachment. Investig. Ophthalmol. Vis. Sci. 32, 1739–1748.

    CAS  Google Scholar 

  13. Geller S.F., Lewis G.P., Anderson D.H., and Fisher S.K. (1995) Use of the MIB-1 antibody for detecting proliferating cells in the retina. Investig. Ophthalmol. Vis. Sci. 36, 737–744.

    CAS  Google Scholar 

  14. Lewis G.P., Erickson P.A., Guerin C.J., Anderson D.H., and Fisher S.K. (1989) Changes in the expression of specific Müller cell proteins during long term retinal detachment. Exp. Eye Res. 49, 93–111.

    Article  PubMed  CAS  Google Scholar 

  15. Sethi C.S., Lewis G.P., Leitner W.P., Mann D.L., Charteris D.G., and Fisher S.K. (2001) Neuronal plasticity in complicated clinical and experimental retinal detachment (RD). Investig. Ophthalmol. Vis. Sci. 42 (suppl.) S445.

  16. Burton T.C. (1982) Recovery of visual acuity after retinal detachment involving the macula. Trans. Am. Ophthalmol. Soc. 80, 475–497.

    PubMed  CAS  Google Scholar 

  17. Lewis G.P., Sethi C.S., Charteris D.G., Leitner W.P., Linberg K.A., and Fisher S.K. (2002) The ability of rapid retinal reattachment to stop or reverse the cellular and molecular events initiated by detachment. Investig. Ophthalmol. Vis. Sci. 43, 2412–2420.

    Google Scholar 

  18. Anderson D.H., Guerin C.J., Erickson P.A., Stern W.H., and Fisher S.K. (1986) Morphological recovery in the reattached retina. Investig. Ophthalmol. Vis. Sci. 27, 168–186.

    CAS  Google Scholar 

  19. Johnson P.T., Williams R.R., Cusato K., and Reese B.E. (1999) Rods and cones project to the inner plexiform layer during development. J. Comp. Neurol. 414, 1–12.

    Article  PubMed  CAS  Google Scholar 

  20. Steinberg R.H., Fisher S.K., and Anderson D.H. (1980) Disc morphogenesis in vertebrate photoreceptors. J. Comp. Neurol. 190, 501–508.

    Article  PubMed  CAS  Google Scholar 

  21. Fisher S.K. and Steinberg R.H. (1982) Origin and organization of pigment epithelial apical projections to cones in cat retina. J. Comp. Neurol. 206, 131–145.

    Article  PubMed  CAS  Google Scholar 

  22. Linberg K.A., Lewis G.P., Barawid E.L., Sakai T., and Fisher S.K. (2002) A Quantitative study of cone matrix sheaths and S-cone recovery in reattached retina. Investig. Ophthalmol. Vis. Sci. 43 (suppl) No. 4536.

    Google Scholar 

  23. Sakai T., Calderone J.B., Lewis G.P., Linberg K.A., Fisher S.K., and Jacobs G.H. (2003) Cone photoreceptor recovery following experimental detachment and reattachment: an immunocytochemical, morphological, an electrophysiological study. Investig. Ophthalmol. Vis. Sci. 44, 416–425.

    Article  Google Scholar 

  24. Sarthy V. and Ripps H. (2001) The retinal Müller cell. Structure and function. Perspectives in Vision Research, Kluwer Academic, Plenum Publishers, NY, pp. 209–215.

    Google Scholar 

  25. Lewis G.P. and Fisher S.K. (in press) Upregulation of GFAP in response to retinal injury: Its potential role in glial remodeling and a comparison to vimentin expression. Int. Rev. Cytol.

  26. Lewis G.P., Matsumoto B., and Fisher S.K. (1995) Changes in the organization of cytoskeletal proteins during retinal degeneration induced by retinal detachment. Investig. Ophthalmol. Vis. Sci. 36, 2404–2416.

    CAS  Google Scholar 

  27. Machemer R. (1968) Experimental retinal detachment in the owl monkey: IV. The reattached retina. Am. J. Ophthalmol. 66, 1075–1091.

    PubMed  CAS  Google Scholar 

  28. Kroll A.J. and Machemer R. (1969a) Experimental retinal detachment in the owl monkey. V. Electron microscopy of reattached retina. Am. J. Ophthalmol. 67, 117–130.

    PubMed  CAS  Google Scholar 

  29. Kroll A.J. and Machemer R. (1969b) Experimental retinal detachment and reattachment in the rhesus monkey. Am. J. Ophthalmol. 68, 58–77.

    PubMed  CAS  Google Scholar 

  30. Fisher S.K. and Anderson D.H. (2001) Cellular effects of detachment on the neural retina and the retinal pigment epithelium. In: Retina, vol. 3 (Stephen J. Ryan, ed.), Mosby, Inc., St. Louis, MO, pp. 1961–1986.

    Google Scholar 

  31. Pekny M., Johansson C.B., Eliasson C., Stakeberg J., Wallen A., Perlmann T., et al. (1999) Abnormal reaction to central nervous system injury in mice lacking glial fibrillary acidic protein and vimentin. J. Cell Biol. 145, 503–514.

    Article  PubMed  CAS  Google Scholar 

  32. Li Z.Y., Klijavin I.J., and Milam A.H. (1995) Rod photoreceptor neurite sprouting in retinitis pigmentosa. J. Neurosci. 15, 5429–5438.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey P. Lewis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, G.P., Sethi, C.S., Linberg, K.A. et al. Experimental retinal reattachment. Mol Neurobiol 28, 159–175 (2003). https://doi.org/10.1385/MN:28:2:159

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:28:2:159

Index Entries

Navigation