Skip to main content
Log in

Downloading central clock information in Drosophila

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Pigment-dispèrsing factor (PDF) neuropeptide is an important neurochemical that carries circadian timing information originating from the central oscillator in Drosophila. Several core-clock factors function as upstream pdf regulators; the dClock and cycle genes control pdf transcription, whereas the period and timeless genes regulate post-translational processes of PDF via unknown mechanisms. For a downstream neural path, PDF most likely acts as a local modulator, which binds to its receptors that are possibly linked to Ras/MAPK signaling pathways. PDF receptor-containing cells seem to localize in the vicinity of nerve terminals from pace-making neurons. Although PDF is likely to be a principal clock-output factor, our recent evidence predicts the presence of other neuropeptides with rhythm-relevant functions. Furthermore, recent microarray screens have identified numerous potential clock-controlled genes, suggesting that diverse physiological processes might be affected by the biological clock system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hamblen M., Zehring, W. A., Kyriacou, C. P., et al. (1986) Germ-line transformation involving DNA from the period locus in Drosophila melanogaster: overlapping genomic fragments that restore circadian and ultradian rhythmicity to per 0 and per mutants. J. Neurogenet. 3, 249–291.

    PubMed  CAS  Google Scholar 

  2. Helfrich-Förster C. (2001) The locomotor activity rhythm of Drosophila melanogaster is controlled by a dual oscillator system. J. Insect Physiol. 47, 877–887.

    Article  Google Scholar 

  3. Saunders D. S. (1982) Insect Clocks. (2nd edition) Pergamon, Oxford, UK pp. 52–57.

    Google Scholar 

  4. Brett W. J. (1955) Persistent diurnal rhythmicity in Drosophila emergence. Ann. Entomol. Soc. Amer. 48, 119–131.

    Google Scholar 

  5. Konopka R. J. and Benzer S. (1971) Clock mutants of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 68, 2112–2116.

    Article  PubMed  CAS  Google Scholar 

  6. Rosato E. and Kyriacou C. P. (2001) Flies, clocks and evolution. Philos. Trans. R Soc. Lond. B Biol. Sci. 356, 1769–1778.

    Article  PubMed  CAS  Google Scholar 

  7. Young M. W. and Kay S. A. (2001) Time zones: a comparative genetics of circadian clocks. Nat. Rev. Genet. 2, 702–715.

    Article  PubMed  CAS  Google Scholar 

  8. Williams J. A. and Sehgal A. (2001) Molecular components of the circadian system in Drosophila. Annu. Rev. Physiol. 63, 729–755.

    Article  PubMed  CAS  Google Scholar 

  9. Ewer J., Frisch B., Hamblen-Coyle M. J., Rosbash M., and Hall J. C. (1992) Expression of the period clock gene within different cell types in the brain of Drosophila adults and mosaic analysis of these cells’ influence on circadian behavioral rhythms. J. Neurosci. 12, 3321–3349.

    PubMed  CAS  Google Scholar 

  10. Frisch B., Hardin P. E. Hamblen-Coyle M., Rosbash M., and Hall J. C. (1994) A promoterless period gene mediates behavioral rhythmicity and cyclical per expression in a restricted subset of the Drosophila nervous system. Neuron 12, 555–570.

    Article  PubMed  CAS  Google Scholar 

  11. Renn S. C. P., Park J. H., Rosbash M., and Hall J. C. (1999) A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell 99, 791–802.

    Article  PubMed  CAS  Google Scholar 

  12. Handler A. M. and Konopka R. J. (1979) Transplantation of a circadian pacemaker in Drosophila. Nature 279, 236–238.

    Article  PubMed  CAS  Google Scholar 

  13. Truman J. W. (1973) How moths “turn on”: A study of the action of hormone on the nervous system. Sci. Am. Nov–Dec, 700–706.

  14. Gammie S. C. and Truman J. W. (1999) Eclosion hormone provides a link between ecdysis-triggering hormone and crustacean cardioactive peptide in the neuroendocrine cascade that controls ecdysis behavior. J. Exp. Biol. 202, 343–352.

    PubMed  CAS  Google Scholar 

  15. Rao K. R. and Riehm J. P. (1993) Pigment-dispersing hormones. Ann. NY Acad. Sci. 680, 78–88.

    Article  PubMed  CAS  Google Scholar 

  16. Fingerman S. W. and Fingerman M. (1977) Circadian variation in the levels of red pigment-dispersing hormone and 5-hydroxytryptamine in the eyestalks of the fiddler crab, Uca pugilator. Comp. Biochem. Physiol. 56C, 5–8.

    Google Scholar 

  17. Aréchiga H., Cortes J. L., Garcia U., and Rodriguez-Sosa L. (1985) Neuroendocrine correlates of circadian rhythmicity in Crustaceans. Amer. Zool. 25, 265–274.

    Google Scholar 

  18. Stengl M. and Homberg U. (1994) Pigment dispersing hormone-immunoreactive neurons in the cockroach Leucophaea maderae share properties with circadian pacemaker neurons. J. Comp. Physiol. A 175, 203–213.

    Article  PubMed  CAS  Google Scholar 

  19. Helfrich-Förster C. (1995) The period clock gene is expressed in central nervous system neurons which also produce a neuropeptide that reveals the projections of circadian pacemaker cells within the brain of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 92, 612–616.

    Article  PubMed  Google Scholar 

  20. Park J. H. and Hall J. C. (1998) Isolation and chronobiological analysis of a neuropeptide pigment-dispersing factor gene in Drosophila melanogaster. J. Biol. Rhythms 13, 219–228.

    Article  PubMed  CAS  Google Scholar 

  21. Allada R., White N. E., So W. V., Hall J. C., and Rosbash M. (1998) A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell 93, 791–804.

    Article  PubMed  CAS  Google Scholar 

  22. Rutila J. E., Suri V., Le M., So W. V., Rosbash M., and Hall J. C. (1998) CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell 93, 805–814.

    Article  PubMed  CAS  Google Scholar 

  23. Park J. H., Helfrich-Förster C., Lui L., Rosbash M., and Hall J. C. (2000) Differential regulation of circadian pacemaker output by separate clock genes in Drosophila. Proc. Natl. Acad. Sci. USA 97, 3608–3613.

    Article  PubMed  CAS  Google Scholar 

  24. Helfrich-Förster C. (1997) Development of pigment-dispersing hormone-immunoreactive neurons in the nervous system of Drosophila melanogaster. J. Comp. Neurol. 380, 335–354.

    Article  PubMed  Google Scholar 

  25. Helfrich-Förster C. (1998) Robust circadian rhythmicity of Drosophila melanogaster requires the presence of lateral neurons: a brain-behavioral study of disconnected mutants. J. Comp. Physiol. A 182, 435–453.

    Article  PubMed  Google Scholar 

  26. Helfrich-Förster C., Täuber M., Park J. H., Mühlig-Versen M., Schneuwly S., and Hofbauer A. (2000) Ectopic expression of the neuropeptide pigment-dispersing factor alters behavioral rhythms in Drosophila melanogaster. J. Neurosci. 20, 3339–3353.

    PubMed  Google Scholar 

  27. Blau J. and Young M. W. (1999) Cycling vrille expression is required for a functional Drosophila clock. Cell 99, 661–671.

    Article  PubMed  CAS  Google Scholar 

  28. Darlington T. K., Wager S. K., Ceriani M. F., et al. (1998) Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science 280, 1599–1603.

    Article  PubMed  CAS  Google Scholar 

  29. Hao H., Glossop N. R., Lyons L., et al. (1999) The 69 bp circadian regulatory sequence (CRS) mediates per-like developmental, spatial, and circadian expression and behavioral rescue in Drosophila. J. Neurosci. 19, 987–994.

    PubMed  CAS  Google Scholar 

  30. McDonald M. J., Rosbash M., and Emery P. (2001) Wild-type circadian rhythmicity is dependent on closely spaced E boxes in the Drosophila timeless promoter. Mol. Cell. Biol. 21, 1207–1217.

    Article  PubMed  CAS  Google Scholar 

  31. Wang G. K., Ousley A., Darlington T. K., Chen D., Chen Y., Fu W., Hickman L. J., Kay S. A., and Sehgal A. (2001) Regulation of the cycling of timeless (tim) RNA. J. Neurobiol. 47, 161–175.

    Article  PubMed  CAS  Google Scholar 

  32. Bae K., Lee C., Sidote D., Chuang K. Y., and Edery I. (1998) Circadian regulation of a Drosophila homolog of the mammalian clock gene: PER and TIM function as positive regulators. Mol. Cell. Biol. 18, 6142–6151.

    PubMed  CAS  Google Scholar 

  33. Welsh D. K., Logothetis D. E., Meister M., and Reppert S. M. (1995) Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14, 697–706.

    Article  PubMed  CAS  Google Scholar 

  34. Aujard F., Herzog E. D., and Block G. D. (2001) Circadian rhythms in firing rate of individual suprachiasmatic nucleus neurons from adult and middle-aged mice. Neurosci. 106, 255–261.

    Article  CAS  Google Scholar 

  35. Kaneko M. (2000) Neural substrates of circadian rhythms in developing and adult Drosophila. PhD dissertation. Brandeis University, MA.

    Google Scholar 

  36. Petri B. and Stengl M. (1997) Pigment-dispersing hormone shifts the phase of the circadian pacemaker of the cockroach Leucophaea maderae. J. Neurosci. 17, 4087–4093.

    PubMed  CAS  Google Scholar 

  37. Williams J. A., Su H. S., Bernards A., Field J., and Sehgal A. (2001) A circadian output in Drosophila mediated by neurofibromatosis-1 and Ras/MAPK. Science 293, 2251–2256.

    Article  PubMed  CAS  Google Scholar 

  38. Viscochil D., White R., and Cawthon R. (1993) The neurofibromatosis type 1 gene. Annu. Rev. Neurosci. 16, 183–205.

    Article  Google Scholar 

  39. The I., Hannigan G. E., Cowley G. S., et al. (1997) Rescue of a Drosophila NF1 mutant phenotype by protein kinase A. Science 276, 791–794.

    Article  PubMed  CAS  Google Scholar 

  40. Hewes R. S. and Taghert P. H. (2001) Neuropeptides and neuropeptide receptors in the Drosophila melanogaster genome. Genome Res. 11, 1126–1142.

    Article  PubMed  CAS  Google Scholar 

  41. Bier E. (1998) Localized activation of RTK/MAPK pathways during Drosophila development. Bioessays 20, 189–194.

    Article  PubMed  CAS  Google Scholar 

  42. Liebmann C. (2001) Regulation of MAP kinase activity by peptide receptor signaling pathway: Paradigms of multiplicity. Cell. Signal. 13, 777–785.

    Article  PubMed  CAS  Google Scholar 

  43. Kramer A, Yang F. C., Snodgrass P., Li X., Scammell T. E., Davis F. C., and Weitz C. J. (2001) Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science 294, 2511–2515.

    Article  PubMed  CAS  Google Scholar 

  44. Steller H., Fischbach K.-F, and Rubin G. M. (1987) Disconnected: A locus required for neuronal pathway formation in the visual system of Drosophila. Cell 50, 1139–1153.

    Article  PubMed  CAS  Google Scholar 

  45. Zerr D. M., Hall, J. C., Rosbash, M. and Siwicki, K. K. (1990) Circadian fluctations of period protein immunoreactivity in the CNS and the visual system of Drosophila. J. Neurosci. 10, 2749–2762.

    PubMed  CAS  Google Scholar 

  46. Kaneko M. and Hall J. C. (2000) Neuroanatomy of cell expressing clock genes in Drosophila: transgenic manipulation of the period and timeless genes to mark the perikarya of circadian pacemaker neurons and their projections. J. Comp. Neurol. 422, 66–94.

    Article  PubMed  CAS  Google Scholar 

  47. Kaneko M., Park J. H., Chen Y., Hardin P., and Hall J. C. (2000) Disruption of synaptic transmission or clock-gene-product oscillations in circadian pacemaker cells of Drosophila cause abnormal behavioral rhythms. J. Neurobiol. 43, 207–233.

    Article  PubMed  CAS  Google Scholar 

  48. Blanchardon E., Grima B., Klarsfeld A., Chelot E., Hardin P. E., Preat T., and Rouyer F. (2001) Defining the role of Drosophila lateral neurons in the control of circadian rhythms in motor activity and eclosion by targeted genetic ablation and PERIOD protein overexpression. Eur. J. Neurosci. 13, 871–888.

    Article  PubMed  CAS  Google Scholar 

  49. Taghert P. H., Hewes R. S., Park J. H., O’Brien M. A., Han M., and Peck M. E. (2001) Multiple amidated neuropeptides are required for normal circadian locomotor rhythms in Drosophila. J. Neurosci. 21, 6673–6686.

    PubMed  CAS  Google Scholar 

  50. Kolhekar A. S., Robert M. S., Jiang N., Johnson R. C., Mains R. E., Eipper B. A., and Taghert P. H. (1997) Neuropeptide amidation in Drosophila: Separate genes encode the two enzymes catalyzing amidation. J. Neurosci. 17, 1363–1376.

    PubMed  CAS  Google Scholar 

  51. McDonald M. J. and Rosbash M. (2001) Microarray analysis and organization of circadian gene expression in Drosophila. Cell 107, 567–578.

    Article  PubMed  CAS  Google Scholar 

  52. Veenstra J. A. (1989) Isolation and structure of corazonin, a cardioactive peptide from the American cockroach. FEBS Lett. 250, 231–234.

    Article  PubMed  CAS  Google Scholar 

  53. Tawfik A. I., Tanaka S., De Loof A., et al. (1999) Identification of the gregarization-associated dark-pigmentotropin in locusts through an albino mutant. Proc. Natl. Acad. Sci. USA 96, 7083–7087.

    Article  PubMed  CAS  Google Scholar 

  54. Tanaka S. (2000) The role of [His7]-corazonin in the control of body-color polymorphism in the migratory locust, Locusta migratoria (Orthoptera: Acrididae). J. Insect Physiol. 46, 1169–1176.

    Article  CAS  Google Scholar 

  55. Veenstra J. A. (1994) Isolation and structure of the Drosophila corazonin gene. Biochem. Biophys. Res. Commun. 204, 292–296.

    Article  PubMed  CAS  Google Scholar 

  56. Broeck J. V. (2001) Neuropeptides and their precursors in the fruit fly, Drosophila melanogaster. Peptides 22, 241–254.

    Article  Google Scholar 

  57. Huesmann G. R., Cheung C. C., Loi P. K., Lee T. D., Swiderek K. M., and Tublitz N. J. (1995) Amino acid sequence of CAP2b, an insect cardioacceleratory peptide from the tobacco hawkmoth Manduca sexta. FEBS Lett. 371, 311–314.

    Article  PubMed  CAS  Google Scholar 

  58. Davies S. A., Huesmann, G. R., Maddrell S. P., et al. (1995) CAP2b, a cardioacceleratory peptide, is present in Drosophila and stimulates tubule fluid secretion via cGMP. Am. J. Physiol. 269, R1321-R1326.

    PubMed  CAS  Google Scholar 

  59. Giebultowicz J. M., Stanewsky R., Hall J. C., and Hege D. M. (2000) Transplanted Drosophila excretory tubules maintain circadian clock cycling out of phase with the host. Curr. Biol. 10, 107–110.

    Article  PubMed  CAS  Google Scholar 

  60. Coast G. M., Webster S. G., Schegg K. M., Tobe S. S., and Schooley D. A. (2001) The Drosophila melanogaster homologue of an insect calcitonin-like diuretic peptide stimulates V-ATPase activity in fruit fly Malpighian tubules. J. Exp. Biol. 204, 1795–1804.

    PubMed  CAS  Google Scholar 

  61. George H. and Terracol R. (1997) The vrille gene of Drosophila is a maternal enhancer of decapen-taplegic and encodes a new member of the bZIP family of transcription factors. Genetics 146, 1345–1363.

    PubMed  CAS  Google Scholar 

  62. Mitsui S., Yamaguchi S., Matsuo T., Ishida Y., and Okamura H. (2001) Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism. Genes Dev. 15, 995–1006.

    Article  PubMed  CAS  Google Scholar 

  63. Doi M., Nakajima Y., Okano T., and Fukada Y. (2001) Light-induced phase-delay of the chicken pineal circadian clock is associated with the induction of cE4bp4, a potential transcriptional repressor of cPer2 gene. Proc. Natl. Acad. Sci. USA 98, 8089–8094.

    Article  PubMed  CAS  Google Scholar 

  64. Lopez-Molina L., Conquet F., Dubois-Dauphin M., and Schibler U. (1997) The DBP gene is expressed according to a circadian rhythm in the suprachiasmatic nucleus and influences circadian behavior. EMBO J. 16, 6762–6771.

    Article  PubMed  CAS  Google Scholar 

  65. Ripperger J. A., Shearman L. P., Reppert S. M., and Schibler U. (2000) CLOCK, an essential pacemarker component, controls expression of the circadian transcription factor DBP. Genes Dev. 14, 679–689.

    PubMed  CAS  Google Scholar 

  66. Yamaguchi S., Mitsui S., Yan L., Yagita K., Miyake S., and Okamura H. (2000) Role of DBP in the circadian oscillatory mechanism. Mol. Cell. Biol. 20, 4773–4781.

    Article  PubMed  CAS  Google Scholar 

  67. Lavery D. J., Lopez-Molina L., Margueron R., Fleury-Olela F., Conquet F., Schibler U., and Bonfils C. (1999) Circadian expression of the steroid 15 alpha-hydroxylase (Cyp2a4) and coumarin 7-hydroxylase (Cyp2a5) genes in mouse liver is regulated by the PAR leucine zipper transcription factor DBP. Mol. Cell Biol. 19, 6488–6499.

    PubMed  CAS  Google Scholar 

  68. Belvin M. P., Zhou H., and Yin J. C. (1999) The Drosophila dCREB2 gene affects the circadian clock. Neuron 22, 777–787.

    Article  PubMed  CAS  Google Scholar 

  69. Levine J. D., Casey C. I., Kalderon D. D., and Jackson F. R. (1994) Altered circadian pacemaker functions and cyclic AMP rhythms in the Drosophila learning mutant dunce. Neuron 14, 967–974.

    Article  Google Scholar 

  70. Dubnau J. and Tully T. (1998) Gene discovery in Drosophila: New insights for learning and memory. Annu. Rev. Neurosci. 21, 407–444.

    Article  PubMed  CAS  Google Scholar 

  71. Hendricks J. C., Williams J. A., Panckeri K., Kirk D., Tello M., Yin J. C. P., and Sehgal A. (2001) A non-circadian role for cAMP signaling and CREB activity in Drosophila rest homeostasis. Nature Neurosci. 4, 1108–1115.

    Article  PubMed  CAS  Google Scholar 

  72. Hendricks J. C., Sehgal A., Pack A. I. (2000) The need for a simple animal model to understand sleep. Prog. Neurobiol. 61, 339–351.

    Article  PubMed  CAS  Google Scholar 

  73. Greenspan R. J., Tononi G., Cirelli C., Shaw P. J. (2001) Sleep and the fruit fly. TINS 24, 142–145.

    PubMed  CAS  Google Scholar 

  74. Newby L. M., and Jackson F. R. (1993) A new biological rhythm mutant of Drosophila melanogaster that identifies a gene with an essential embryonic function. Genetics 135, 1077–1090.

    PubMed  CAS  Google Scholar 

  75. McNeil G. P., Zhang X., Genova G., and Jackson F. R. (1998) A molecular rhythm mediating circadian clock output in Drosophila. Neuron 20, 297–303.

    Article  PubMed  CAS  Google Scholar 

  76. Zhang X. L., McNeil G. P., Hilderbrand-Chae M. J., Franklin T. M., Schroeder A. J., and Jackson F. R. (2000) Circadian regulation of the lark RNA-binding protein within identifiable neurosecretory cells. J. Neurobiol. 45, 14–29.

    Article  PubMed  CAS  Google Scholar 

  77. Sarov-Blat L., So W. V., Liu L., and Rosbash M. (2000) The Drosophila takeout gene is a novel molecular link between circadian rhythms and feeding behavior. Cell 101, 647–656.

    Article  PubMed  CAS  Google Scholar 

  78. So W. V., Sarov-Blat L., Kotarski C. K., McDonald M. J., Allada R., and Rosbash M. (2000) takeout, a novel Drosophila gene under circadian clock transcriptional regulation. Mol. Cell. Biol. 20, 6935–6944.

    Article  PubMed  CAS  Google Scholar 

  79. Oklejewicz M., Overkamp G. J., Stirland J. A., and Daan S. (2001) Temporal organization of feeding in syrian hamsters with a genetically altered circadian period. Chronobiol. Int. 18, 657–664.

    Article  PubMed  CAS  Google Scholar 

  80. Lowrey P. L., Shimomura K., Antoch M. P., Yamazaki S., Zemenides P. D., Ralph M. R., Menaker M., and Takahashi J. S. (2000) Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 288, 483–492.

    Article  PubMed  CAS  Google Scholar 

  81. Van Gelder R. N., Bae H., Palazzolo M., and Krasnow M. A. (1995) Extent and character of circadian gene expression in Drosophila melanogaster: identification of twenty oscillating mRNAs in the fly head. Curr. Biol. 5, 1424–1436.

    Article  PubMed  Google Scholar 

  82. Van Gelder R. N. and Krasnow M. A. (1996) A novel circadianly expressed Drosophila melanogaster gene dependent on the period gene for its rhythmic expression. EMBO J. 15, 1625–1631.

    PubMed  Google Scholar 

  83. Rouyer F., Rachidi M., Pikielny C., and Rosbash M. (1997) A new gene encoding a putative transcription factor regulated by the Drosophila circadian clock. EMBO J. 16, 3944–3954.

    Article  PubMed  CAS  Google Scholar 

  84. Claridge-Chang A., Wijnen H., Naef F., Boothroyd C., Rajewsky N., and Young M. W. (2001) Circadian regulation of gene expression systems in the Drosophila head. Neuron 32, 657–671.

    Article  PubMed  CAS  Google Scholar 

  85. Krishnan B., Dryer S. E., and Hardin P. E. (1999) Circadian rhythms in olfactory responses of Drosophila melanogaster. Nature 400, 375–378.

    Article  PubMed  CAS  Google Scholar 

  86. Sakai T., and Ishida N. (2001) Circadian rhythms of female mating activity governed by clock genes in Drosophila. Proc. Natl. Acad. Sci. USA 98, 9221–9225.

    Article  PubMed  CAS  Google Scholar 

  87. Andretic R., Chaney S., and Hirsh J. (1999) Requirement of circadian genes for cocaine sensitization in Drosophila. Science 285, 1066–1068.

    Article  PubMed  CAS  Google Scholar 

  88. Kyriacou C. P. and Hall J. C. (1980) Circadian rhythm mutations in Drosophila melanogaster affect short-term fluctuations in the male’s courtship song. Proc. Natl. Acad. Sci. USA 77, 6729–6733.

    Article  PubMed  CAS  Google Scholar 

  89. Toh K. L., Jones C. R., He Y., et al. (2001) An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291, 1040–1043.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae H. Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J.H. Downloading central clock information in Drosophila . Mol Neurobiol 26, 217–233 (2002). https://doi.org/10.1385/MN:26:2-3:217

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:26:2-3:217

Index Entries

Navigation