Skip to main content
Log in

Tau function and dysfunction in neurons

Its role in neurodegenerative disorders

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the most usual neurodegenerative disorder leading to dementia in the aged human population. It is characterized by the presence of two main brain pathological hallmarks: senile plaques and neurofibrillary tangles (NFTs). NFTs are composed of fibrillar polymers of the abnormally phosphorylated cytoskeletal protein tau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weingarten M. D., Lockwood A. H., Hwo S. Y., and Kirschner M. W. (1975). A protein factor essential for microtubule assembly, Proc. Natl. Acad. Sci. USA 72, 1858–1862.

    PubMed  CAS  Google Scholar 

  2. Fellous A., Francon J., Lennon A. M., and Nunez J. (1977). Microtubule assembly in vitro. Purification of assembly-promoting factors, Eur. J. Biochem. 78, 167–174.

    PubMed  CAS  Google Scholar 

  3. Cleveland D. W., Hwo S. Y., and Kirschner M. W. (1977). Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin, J. Mol. Biol. 116, 207–225.

    PubMed  CAS  Google Scholar 

  4. Cleveland D. W., Hwo S. Y., and Kirschner M. W. (1977). Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly, J. Mol. Biol. 116, 227–247.

    PubMed  CAS  Google Scholar 

  5. García de Ancos J., Correas I., and Avila J. (1993). Differences in microtubule binding and self-association abilities of bovine brain tau isoforms, J. Biol. Chem. 268, 7976–7982.

    PubMed  Google Scholar 

  6. Lee V. M., Otvos L. J., Schmidt M. L., and Trojanowski J. Q. (1988) Alzheimer disease tangles share immunological similarities with multiphosphorylation repeats in the two large neurofilament proteins, Proc. Natl. Acad. Sci. USA 85, 7384–7388.

    PubMed  CAS  Google Scholar 

  7. Lee V. M., Otvos L. J., Carden M. J., Hollosi M., Dietzschold B., and Lazzarini R. A. (1988). Identification of the major multiphosphorylation site in mammalian neurofilaments, Proc. Natl. Acad. Sci. USA 85, 1998–2002.

    PubMed  CAS  Google Scholar 

  8. Lee G., Cowan N., and Kirschner M. (1988). The primary structure and heterogeneity of tau protein from mouse brain, Science 239, 285–288.

    PubMed  CAS  Google Scholar 

  9. Kosik K. S., Crandall J. E., Mufson E. J., and Neve R. L. (1989). Tau in situ hybridization in normal and Alzheimer brain: localization in the somatodendritic compartment, Ann. Neurol. 26, 352–361.

    PubMed  CAS  Google Scholar 

  10. Kosik K. S., Kowall N. W., and McKee A. (1989). Along the way to a neurofibrillary tangle: a look at the structure of tau, Ann. Med. 21, 109–112.

    PubMed  CAS  Google Scholar 

  11. Kosik K. S. (1989). The molecular and cellular pathology of Alzheimer neurofibrillary lesions, J. Gerontol. 44(3), B55–58.

    PubMed  CAS  Google Scholar 

  12. Kosik K. S. (1989). Pyramidal cell topography of microtubule-associated proteins and their precipitation into paired helical filaments, Ann. NY Acad. Sci. 568, 125–130.

    PubMed  CAS  Google Scholar 

  13. Kosik K. S., Orecchio L. D., Bakalis S., and Neve R. L. (1989). Developmentally regulated expression of specific tau sequences, Neuron 2, 1389–1397.

    PubMed  CAS  Google Scholar 

  14. Himmler A. (1989). Structure of the bovine tau gene: alternatively spliced transcripts generate a protein family, Mol. Cell Biol. 9, 1389–1396.

    PubMed  CAS  Google Scholar 

  15. Himmler A., Drechsel D., Kirschner M. W., and Martin D. J. (1989). Tau consists of a set of proteins with repeated C-terminal microtubule-binding domains and variable N-terminal domains, Mol. Cell Biol. 9, 1381–1388.

    PubMed  CAS  Google Scholar 

  16. Goedert M., Spillantini M. G., Jakes R., Rutherford D., and Crowther R. A. (1989). Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease, Neuron 3, 519–526.

    PubMed  CAS  Google Scholar 

  17. Goedert M., Spillantini M. G., Potier M. C., Ulrich J., and Crowther R. A. (1989). Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain, EMBO J. 8, 393–399.

    PubMed  CAS  Google Scholar 

  18. Goedert M., and Crowther R. A. (1989). Amyloid plaques, neurofibrillary tangles and their relevance for the study of Alzheimer’s disease, Neurobiol. Aging 10, 405–406.

    PubMed  CAS  Google Scholar 

  19. Neve R. L., Harris K. S., Kosik K. S., Kurnit D. M., and Donlon T. A. (1986). Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and microtubule-associated protein 2, Brain Res. 387, 271–280.

    PubMed  CAS  Google Scholar 

  20. Andreadis A., Brown W. M., and Kosik K. S. (1992). Structure and novel exons of the human tau gene, Biochemistry 31, 10626–10633.

    PubMed  CAS  Google Scholar 

  21. Andreadis A., Wagner B. K., Broderick J. A., and Kosik K. S. (1996). A tau promoter region without neuronal specificity, J. Neurochem. 66, 2257–2263.

    PubMed  CAS  Google Scholar 

  22. Heicklen-Klein A., and Ginzburg I. (2000). Tau promoter confers neuronal specificity and binds Sp1 and AP-2, J. Neurochem. 75, 1408–1418.

    PubMed  CAS  Google Scholar 

  23. Nuñez J. (1988). Immature and mature variants of MAP2 and tau proteins and neuronal plasticity [news], Trends Neurosci. 11, 477–479.

    PubMed  Google Scholar 

  24. Couchie D., Mavilia C., Georgieff I. S., Liem R. K., Shelanski M. L., and Nuñez J. (1992). Primary structure of high molecular weight tau present in the peripheral nervous system, Proc. Natl. Sci. USA 89, 4378–4381.

    CAS  Google Scholar 

  25. Goedert M., Spillantini M. G., and Crowther R. A. (1992). Cloning of a big tau microtubule-associated protein characteristic of the peripheral nervous system, Proc. Natl. Acad. Sci. USA 89, 1983–1987.

    PubMed  CAS  Google Scholar 

  26. Goedert M., Spillantini M. G., Cairns N. J., and Crowther R. A. (1992). Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms, Neuron 8, 159–168.

    PubMed  CAS  Google Scholar 

  27. Goedert M., Cohen E. S., Jakes R., and Cohen P. (1992). p42 map kinase phosphorylation sites in microtubule-associated protein tau are dephosphorylated by protein phosphatase 2A1. Implications for Alzheimer’s disease, FEBS Lett. 312, 95–99.

    PubMed  CAS  Google Scholar 

  28. Arrasate M., Pérez M., Valpuesta J. M., and Avila J. (1997). Role of glycosaminoglycans in determining the helicity of paired helical filaments, Am. J. Pathol. 151, 1115–1122.

    PubMed  CAS  Google Scholar 

  29. Goode B. L., Denis P. E., Panda D., Radeke M. J., Miller H. P., Wilson L., and Feinstein S. C. (1997). Functional interactions between the proline-rich and repeat regions of tau enhance microtubule binding and assembly, Mol. Biol. Cell 8, 353–365.

    PubMed  CAS  Google Scholar 

  30. Kanai Y., Chen J., and Hirokawa N. (1992). Microtubule bundling by tau proteins in vivo: analysis of functional domains, EMBO J. 11, 3953–3961.

    PubMed  CAS  Google Scholar 

  31. Hirokawa N., Shiomura Y., and Okabe S. (1988). Tau proteins: the molecular structure and mode of binding on microtubules, J. Cell. Biol. 107, 1449–1459.

    PubMed  CAS  Google Scholar 

  32. von Bergen M., Griedhoff P., Biernat J., Heberle J., Mandelkow E. M., and Mandelkow E. (2000). Assembly of tau protein into Alzheimer paired helical filaments depends on a local sequence motif ((306)VQIVYK(311)) forming beta structure, Proc. Natl. Acad. Sci. USA 97, 5129–5134.

    Google Scholar 

  33. Brandt R., Leger J., and Lee G. (1995). Interaction of tau with the neural plasma membrane mediated by tau’s amino-terminal projection domain, J. Cell. Biol. 131, 1327–1340.

    PubMed  CAS  Google Scholar 

  34. Arrasate M., Perez M., and Avila J. (2000). Tau dephosphorylation at tau-1 site correlates with its association to cell membrane, Neurochem. Res. 25, 43–50.

    PubMed  CAS  Google Scholar 

  35. García Rocha M., and Avila J. (1995). Characterization of microtubule-associated protein phosphoisoforms present in isolated growth cones., Brain Res. Dev. Brain Res. 89, 47–55.

    PubMed  Google Scholar 

  36. Wong P., MacDonald I. M., Sood R., Smith C., Pilon R., and Tenniswood M. (1993). Identification and partial characterization of a candidate gene for X- linked retinopathies using a lateral approach, Genomics 15, 467–471.

    PubMed  CAS  Google Scholar 

  37. Binder L. I., Frankfurter A., and Rebhun L. I. (1985). The distribution of tau in the mammalian central nervous system, J. Cell Biol. 101, 1371–1378.

    PubMed  CAS  Google Scholar 

  38. Cáceres A., Banker G. A., and Binder L. (1986). Immunocytochemical localization of tubulin and microtubule-associated protein 2 during the development of hippocampal neurons in culture, J. Neurosci. 6, 714–722.

    PubMed  Google Scholar 

  39. Papasozomenos S. C., and Binder L. I. (1987). Phosphorylation determines two distinct species of Tau in the central nervous system, Cell Motil. Cytoskel. 8, 210–226.

    CAS  Google Scholar 

  40. Carlier M. F., Simon C., Cassoly R., and Pradel L. A. (1984). Interaction between microtubule-associated protein tau and spectrin, Biochimie 66, 305–311.

    PubMed  CAS  Google Scholar 

  41. Sontag E., NunbhakdiCraig V., Lee G., Brandt R., Kamibayashi C., Kuret J., et al. (1999). Molecular interactions among protein phosphatase 2A, tau, and microtubules Implications for the regulation of tau phosphorylation and the development of tauopathies, J. Biol. Chem. 274, 25490–25498.

    PubMed  CAS  Google Scholar 

  42. Liao H., Li Y. R., Brautigan D. L., and Gundersen G. G. (1998). Protein phosphatase 1 is targeted to microtubules by the microtubule-associated protein Tau, J. Biol. Chem. 273, 21901–21908.

    PubMed  CAS  Google Scholar 

  43. Sobue K., Agarwal-Mawal A., Li W., Sun W., Miura Y., and Paudel H. K. (2000). Interaction of neuronal Cdc2-like protein kinase with microtubule- associated protein tau, J. Biol. Chem. 275, 16673–16680.

    PubMed  CAS  Google Scholar 

  44. Takashima A., Murayama M., Murayama O., Kohno T., Honda T., Yasutake K., et al. (1998). Presenilin 1 associates with glycogen synthase kinase-3 beta and its substrate tau, Proc. Natl. Acad. Sci. USA 95, 9637–9641.

    PubMed  CAS  Google Scholar 

  45. Jensen P. H., Hager H., Nielsen M. S., Hojrup P., Gliemann J., and Jakes R. (1999). alphasynuclein binds to tau and stimulates the protein kinase A-catalyzed tau phosphorylation of serine residues 262 and 356, J. Biol. Chem. 274, 25481–25489.

    PubMed  CAS  Google Scholar 

  46. Hwang S. C., Jhon D. Y., Bae Y. S., Kim J. H., and Rhee S. G. (1996). Activation of phospholipase C-gamma by the concerted action of tau proteins and arachidonic acid, J. Biol. Chem. 271, 18342–18349.

    PubMed  CAS  Google Scholar 

  47. Jenkins S. M., and Johnson G. V. W. (1998). Tau complexes with phospholipase C-gamma in situ, Neuroreport 9, 67–71.

    PubMed  CAS  Google Scholar 

  48. Lee S. C., Kuan C. Y., Wen Z. D., and Yang S. D. (1998). The naturally occurring PKC inhibitor sphingosine and tumor promoter phorbol ester potentially induce tyrosine phosphorylation/activation of oncogenic proline-directed protein kinase F-A/GSK-3 alpha in a common signalling pathway, J. Protein Chem. 17, 15–27.

    PubMed  CAS  Google Scholar 

  49. Lee G., Newman S. T., Gard D. L., Band H., and Panchamoorthy G. (1998). Tau interacts with src-family non-receptor tyrosine kinases, J. Cell. Sci. 111, 3167–3177.

    PubMed  CAS  Google Scholar 

  50. Correas I., Padilla R., and Avila J. (1990). The tubulin-binding sequence of brain microtubule-associated proteins, tau and MAP-2, is also involved in actin binding, Biochem. J. 269, 61–64.

    PubMed  CAS  Google Scholar 

  51. Lu P. J., Wulf G., Zhou X. Z., Davies P., and Lu K. P. (1999). The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein, Nature 399, 784–788.

    PubMed  CAS  Google Scholar 

  52. Ishiguro K., Shiratsuchi A., Sato S., Omori A., Arioka M., Kobayashi S., et al. (1993). Glycogen synthase kinase 3 beta is identical to tau protein kinase I generating several epitopes of paired helical filaments, FEBS Lett. 325, 167–172.

    PubMed  CAS  Google Scholar 

  53. Johnson G. V. (1992). Differential phosphorylation of tau by cyclic AMP-dependent protein kinase and Ca2+/calmodulin-dependent protein kinase II: metabolic and functional consequences, J. Neurochem. 59, 2056–2062.

    PubMed  CAS  Google Scholar 

  54. Johnson G. V., Watson A. J., Lartius R., Uemura E., and Jope R. S. (1992). Dietary aluminum selectively decreases MAP-2 in brains of developing and adult rats, Neurotoxicology 13, 463–474.

    PubMed  CAS  Google Scholar 

  55. Trinczek B., Biernat J., Baumann K., Mandelkow E. M., and Mandelkow E. (1995). Domains of tau protein, differential phosphorylation, and dynamic instability of microtubules, Mol. Biol. Cell 6, 1887–1902.

    PubMed  CAS  Google Scholar 

  56. Correas I., Díaz-Nido J., and Avila J. (1992). Microtubule-associated protein tau is phosphorylated by protein kinase C on its tubulin binding domain, J. Biol. Chem. 267, 15721–15728.

    PubMed  CAS  Google Scholar 

  57. Morishima-Kawashima M., Hasegawa M., Takió K., Suzuki M., Yoshida H., Titani K., and Ihara Y. (1995). Proline-directed and non-proline-directed phosphorylation of PHF-tau, J. Biol. Chem. 270, 823–829.

    PubMed  CAS  Google Scholar 

  58. Grant S. M., Morinville A., Maysinger D., Szyf M., and Cuello A. C. (1999). Phosphorylation of mitogen-activated protein kinase is altered in neuroectodermal cells overexpressing the human amyloid precursor protein 751 isoform, Brain Res. Mol. Brain Res. 72, 115–120.

    PubMed  CAS  Google Scholar 

  59. Grant S. M., Shankar S. L., Chalmers-Redman R. M., Tatton W. G., Szyf M. G., and Cuello A. C. (1999). Mitochondrial abnormalities in neuroectodermal cells stably expressing human amyloid precursor protein (hAPP751), Neuroreport 10, 41–46.

    PubMed  CAS  Google Scholar 

  60. Greenwood J. A., Scott C. W., Spreen R. C., Caputo C. B., and Johnson G. V. W. (1994). Casein Kinase II Preferentially Phosphorylates Human Tau Isoforms Containing an Amino-Terminal Insert - Identification of Threonine 39 as the Primary Phosphate Acceptor, J. Biol. Chem. 269, 4373–4380.

    PubMed  CAS  Google Scholar 

  61. Utton M. A., Vandecandelaere A., Wagner U., Reynolds C. H., Gibb G. M., Miller C. C. J., et al. (1997). Phosphorylation of tau by glycogen synthase kinase 3 beta affects the ability of tau to promote microtubule self-assembly, Biochem. J. 323, 741–747.

    PubMed  CAS  Google Scholar 

  62. Muñoz-Montaño J. R., Moreno F. J., Avila J., and Diaz-Nido J. (1997). Lithium inhibits Alzheimer’s disease-like tau protein phosphorylation in neurons, FEBS Lett. 411, 183–188.

    PubMed  Google Scholar 

  63. Scott C. W., Vulliet P. R., and Caputo C. B. (1993). Phosphorylation of tau by proline-directed protein kinase (p34cdc2/p58cyclin A) decreases tau-induced microtubule assembly and antibody SMI33 reactivity, Brain Res. 611, 237–242.

    PubMed  CAS  Google Scholar 

  64. Scott C. W., Spreen R. C., Herman J. L., Chow F. P., Davidson M. D., Young J., and Caputo C. B. (1993). Phosphorylation of recombinant tau by cAMP-dependent protein kinase. Identification of phosphorylation sites and effect on microtubule assembly, J. Biol. Chem. 268, 1166–1173.

    PubMed  CAS  Google Scholar 

  65. Eidenmuller J., Fath T., Hellwig A., Reed J., Sontag E., and Brandt R. (2000). Structural and functional implications of tau hyperphosphorylation: information from phosphorylation-mimicking mutated tau proteins, Biochemistry 39, 13166–13175.

    PubMed  CAS  Google Scholar 

  66. Schnieder A., Biernat J., von Bergen M., Mandelkow E., and Mandelkow E. M. (1999). Phosphorylation that detaches tau protein from microtubules (Ser262, Ser214) also protects it against aggregation into Alzheimer paired helical filaments, Biochemistry 38, 3549–3558.

    Google Scholar 

  67. Paudel H. K., (1997). The regulatory Ser(262) of microtubule-associated protein tau is phosphorylated by phosphorylase kinase, J. Biol. Chem. 272, 1777–1785.

    PubMed  CAS  Google Scholar 

  68. Alonso A. D., Zaidi T., Novak M., Barra H. S., Grundke-Lqbal I., and Lqbal K. (2001). Interaction of tau isoforms with Alzheimer’s disease abnormally hyperphosphorylated tau and in vitro phosphorylation into the disease-like protein, J. Biol. Chem. 276, 37967–37973.

    PubMed  CAS  Google Scholar 

  69. Lee V. M., Goedert M., and Trojanowski J. Q. (2001). Neurodegenerative tauopathies, Annu. Rev. Neurosci. 24, 1121–1159.

    PubMed  CAS  Google Scholar 

  70. Brandt R. and Lee G. (1993). Functional organization of microtubule-associated protein tau. Identification of regions which affect microtubule growth, nucleation, and bundle formation in vitro, J. Biol. Chem. 268, 3414–3419.

    PubMed  CAS  Google Scholar 

  71. Bre M. H. and Karsenti E. (1990). Effects of brain microtubule-associated proteins on microtubule dynamics and the nucleating activity of centrosomes, Cell. Motil. Cytoskel. 15, 88–98.

    CAS  Google Scholar 

  72. Panda D., Goode B. L., Feinstein S. C., and Wilson L. (1995). Kinetic stabilization of microtubule dynamics at steady state by tau and microtubule-binding domains of tau, Biochemistry 34, 11117–11127.

    PubMed  CAS  Google Scholar 

  73. Drubin D. G. and Kirschner M. W. (1986). Tau protein function in living cells, J. Cell. Biol. 103, 2739–2746.

    PubMed  CAS  Google Scholar 

  74. Drubin D. and Kirschner M. (1986). Purification of tau protein from brain, Methods Enzymol. 134, 156–160.

    PubMed  CAS  Google Scholar 

  75. Cáceres A. and Kosik K. S. (1990). Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons, Nature 343, 461–463.

    PubMed  Google Scholar 

  76. Harada A., Oguchi K., Okabe S., Kuno J., Terada S., Ohshima T., et al. (1994). Altered microtubule organization in small-calibre axons of mice lacking tau protein, Nature 369, 488–491.

    PubMed  CAS  Google Scholar 

  77. Ikegami S., Harada A., and Hirokawa N. (2000). Muscle weakness, hyperactivity, and impairment in fear conditioning in tau-deficient mice, Neurosci. Lett. 279, 129–132.

    PubMed  CAS  Google Scholar 

  78. Takei Y., Teng J., Harada A., and Hirokawa N. (2000). Defects in axonal elongation and neuronal migration in mice with disrupted tau and map 1b genes, J. Cell. Biol. 150, 989–1000.

    PubMed  CAS  Google Scholar 

  79. Alzheimer A. (1907). Uber eine eigenartige Erkankung der Hirnrinde. Z. Psychiatr. Psych. Gerichtl. Med. 64, 146–148.

    Google Scholar 

  80. Selkoe D. J. (1989). The deposition of amyloid proteins in the aging mammalian brain: implications for Alzheimer’s disease, Ann. Med. 21, 73–76.

    PubMed  CAS  Google Scholar 

  81. Selkoe D. J. (1989). Molecular pathology of amyloidogenic proteins and the role of vascular amyloidosis in Alzheimer’s disease, Neurobiol. Aging 10, 387–395.

    PubMed  CAS  Google Scholar 

  82. Braak E. and Braak H. (1997). Alzheimer’s disease: Transiently developing dendritic changes in pyramidal cells of sector CA1 of the Ammon’s horn, Acta Neuropathol. 93, 323–325.

    PubMed  CAS  Google Scholar 

  83. Braak H. and Braak E. (1997). Frequency of stages of Alzheimer-related lesions in different age categories, Neurobiol. Aging 18, 351–357.

    PubMed  CAS  Google Scholar 

  84. Kidd M. (1963). Paired helical filaments in electron microscopy of Alzheimer’s disease, Nature 197, 192–193.

    PubMed  CAS  Google Scholar 

  85. Brion J. P., Passasiro H., Nuñez J., and Flament-Durand J. (1985). Mise en evidence immunologique de la proteine tau an niveau des lesions degenerescence neurofibrillaire de la maladie d’Alzheimer, Arch. Biol. 95, 229–235.

    Google Scholar 

  86. Grundke-Iqbal I., Iqbal K., Tung Y. C., Quinlan M., Wisniewski H. M., and Binder L. I. (1986). Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology, Proc. Natl. Acad. Sci. USA 83, 4913–4917.

    PubMed  CAS  Google Scholar 

  87. Grundke-Iqbal I., Iqbal K., Quinlan M., Tung Y. C., Zaidi M. S., and Wisniewski H. M. (1986). Microtubule-associated protein tau. A component of Alzheimer paired helical filaments, J. Biol. Chem. 261, 6084–6089.

    PubMed  CAS  Google Scholar 

  88. Wood J. G., Mirra S. S., Pollock N. J., and Binder L. I. (1986). Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau (tau), Proc. Natl. Acad. Sci. USA 83, 4040–4043.

    PubMed  CAS  Google Scholar 

  89. Ihara Y. (1986) Rinsho Shinkeigaku 26, 1287–1289.

    PubMed  CAS  Google Scholar 

  90. Ihara Y., Nukina N., Miura R., and Ogawara M. (1986). Phosphorylated tau protein is integrated into paired helical filaments in Alzheimer’s diseease, J. Biochem. Tokyo 99, 1807–1810.

    PubMed  CAS  Google Scholar 

  91. Wischik C. M., Novak M., Thogersen H. C., Edwards P. C., Runswick M. J., Jakes R., et al. (1988). Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer disease, Proc. Natl. Acad. Sci. USA 85, 4506–4510.

    PubMed  CAS  Google Scholar 

  92. Wischik C. M., Novak M., Edwards P. C., Klug A., Tichelaar W., and Crowther R. A. (1988). Structural characterization of the core of the paired helical filament of Alzheimer disease, Proc. Natl. Acad. Sci. USA 85, 4884–4888.

    PubMed  CAS  Google Scholar 

  93. Nieto A., Correas I., Montejo de Garcini E., and Avila J. (1988). A modified form of microtubule-associated tau protein is the main component of paired helical filaments., Biochem. Biophys. Res. Commun. 154, 660–667.

    PubMed  CAS  Google Scholar 

  94. Kosik K. S., Bakalis S. F., Selkoe D. J., Pierce M. W., and Duffy L. K. (1986). High molecular weight microtubule-associated proteins: purification by electro-elution and amino acid compositions, J. Neurosci. Res. 15, 543–551.

    PubMed  CAS  Google Scholar 

  95. Kosik K. S., Bakalis S., Galibert L., Selkoe D. J., and Duffy L. K. (1986). Age-related modifications of MAP-2, Ann. NY Acad Sci 466, 420–422.

    PubMed  CAS  Google Scholar 

  96. Kosik K. S., Joachim C. L., and Selkoe D. J. (1986). Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease, Proc. Natl. Acad. Sci. USA 83, 4044–4048.

    PubMed  CAS  Google Scholar 

  97. Arriagada P. V., Growdon J. H., Hedley-Whyte E. T., and Hyman B. T. (1992). Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease, Neurology 42, 631–639.

    PubMed  CAS  Google Scholar 

  98. Arriagada P. V., Marzloff K., and Hyman B. T. (1992). Distribution of Alzheimer-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer’s disease, Neurology 42, 1681–1688.

    PubMed  CAS  Google Scholar 

  99. Wolozin B. L., Pruchnicki A., Dickson D. W., and Davies P. (1986). A neuronal antigen in the brains of Alzheimer patients, Science 232, 648–650.

    PubMed  CAS  Google Scholar 

  100. Carmel G., Mager E. M., Binder L. I., and Kuret J. (1996) The structural basis of monoclonal antibody Alz5O’s selectivity for Alzheimer’s disease pathology. J. Biol. Chem. 271, 32789–32795.

    PubMed  CAS  Google Scholar 

  101. Mena R., Wischik C. M., Novak M., Milstein C., and Cuello A. C. (1991). A progressive deposition of paired helical filaments (PHF) in the brain characterizes the evolution of dementia in Alzheimer’s disease. An immunocytochemical study with a monoclonal antibody against the PHF core, J. Neuropathol. Exp. Neurol. 50, 474–490.

    PubMed  CAS  Google Scholar 

  102. Weaver C. L., Espinoza M., Kress Y., and Davies P. (2000) Conformational change as one of the earliest alterations of tau in Alzheimer’s disease, Neurobiol. Aging 21, 719–727.

    PubMed  CAS  Google Scholar 

  103. Lucas J. J., Hernandez F., Gomez-Ramos P., Moran M. A., Hen R., and Avila J. (2001). Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK 3beta conditional transgenic mice, EMBO J. 20, 27–39.

    PubMed  CAS  Google Scholar 

  104. Avila J. (2000). Tau aggregation into fibrillar polymers: taupathies, FEBS Lett. 476, 89–92.

    PubMed  CAS  Google Scholar 

  105. Goedert M. (1999). Filamentous nerve cell inclusions in neurodegenerative diseases: tauopathies and alpha-synucleinopathies, Philos. Trans. R. Soc. Lond. B. Biol. Sci 354, 1101–1118.

    PubMed  CAS  Google Scholar 

  106. Lovestone S., Reynolds C. H., Latimer D., Davis D. R., Anderton B. H., Gallo J. M., et al. (1994). Alzheimer’s disease-like phosphorylation of the microtubule-associated protein tau by glycogen synthase kinase-3 in transfected mammalian cells, Curr. Biol 4, 1077–1086.

    PubMed  CAS  Google Scholar 

  107. Anderton B. H. (1999). Alzheimer’s disease: clues from flies and worms, Curr. Biol 9, R106–109.

    PubMed  CAS  Google Scholar 

  108. Anderton B. H., Betts J., Blackstock W., Brion J. P., Davis D. R., Gibb G., et al. (1999) Regulation of tau phosphorylation in normal and diseased cells, in Alzheimer’s Disease and Relat (Iqbal K., Swaab D. F., Winblad B., and Wisniewski H. M., eds.), John Wiley & Sons Ltd, West Sussex, UK, pp. 293–299.

    Google Scholar 

  109. Sadot E., Gurwitz D., Barg J., Behar L., Ginzburg I., and Fisher A. (1996). Activation of m(1) muscarinic acetylcholine receptor regulates tau phosphorylation in transfected PC12 cells, J. Neurochem. 66, 877–880.

    PubMed  CAS  Google Scholar 

  110. Sadot E., Heicklenklein A., Barg J., Lazarovici P., and Ginzburg I. (1996). Identification of a tau promoter region mediating tissue-specific-regulated expression in PC12 cells, J. Mol. Biol. 256, 805–812.

    PubMed  CAS  Google Scholar 

  111. Lovestone S. and Reynolds C. H. (1997). The phosphorylation of tau: A critical stage in neurodevelopment and neurodegenerative processes, Neuroscience 78, 309–324.

    PubMed  CAS  Google Scholar 

  112. Fang X., Yu S. X., Lu Y., Bast R. C., Jr., Woodgett J. R., and Mills G. B. (2000). Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A [In Process Citation], Proc. Natl. Acad. Sci. USA 97, 11960–11965.

    PubMed  CAS  Google Scholar 

  113. Tseng H. C., Lu Q., Henderson E., and Graves D. J. (1999). Phosphorylated tau can promote tubulin assembly, Proc. Natl. Acad. Sci. USA 96, 9503–9508.

    PubMed  CAS  Google Scholar 

  114. Zhou Z. X., Kops O., Werner A., Lu J. P., Shen M., Stoller G., et al. (2000). Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins, Mol. Cell. 6, 873–883.

    PubMed  CAS  Google Scholar 

  115. Goedert M., Jakes R., Spillantini M. G., Crowther R. A., Cohen P., Vanmechelen E., et al. (1995). Tau protein in Alzheimer’s disease, Biochem. Soc. Transact. 23, 80–85.

    CAS  Google Scholar 

  116. Goedert M. (1995). Molecular dissection of the neurofibrillary lesions of Alzheimer’s disease, Arzneimittel — Forschung/Drug Res. 45-1, 403–409.

    Google Scholar 

  117. Goedert M., Jakes R., and Vanmechelen E. (1995). Monoclonal antibody AT8 recognises tau protein phosphorylated at both serine 202 and threonine 205, Neurosci. Lett. 189, 167–170.

    PubMed  CAS  Google Scholar 

  118. Goedert M., Spillantini M. G., Jakes R., Crowther R. A., Vanmechelen E., Probst A., et al. (1995). Molecular dissection of the paired helical filament, Neurobiol. Aging 16, 325–334.

    PubMed  CAS  Google Scholar 

  119. Goedert M., Jakes R., Qi Z., Wang J. H., and Cohen P. (1995). Protein phosphatase 2A is the major enzyme in brain that dephosphorylates tau protein phosphorylated by proline-directed protein kinases or cyclic AMP Dependent protein kinase, J. Neurochem. 65, 2804–2807.

    PubMed  CAS  Google Scholar 

  120. Gong C., Wegiel J., Lidsky T., Zuck L., Avila J., Wisniewski H. M., et al. (2000). Regulation of phosphorylation of neuronal microtubule-associated proteins MAP1b and MAP2 by protein phosphatase-2A and 2B in rat brain, Brain Res. 853, 299–309.

    PubMed  CAS  Google Scholar 

  121. Wu J., Tolstykh T., Lee J., Boyd K., Stock J. B., and Broach J. R. (2000). Carboxyl methylation of the phosphoprotein phosphatase 2A catalytic subunit promotes its functional association with regulatory subunits in vivo, EMBO J. 19, 5672–5681.

    PubMed  CAS  Google Scholar 

  122. Virshup D. M. (2000). Protein phosphatase 2A: a panoply of enzymes, Curr. Opin. Cell. Biol. 12, 180–185.

    PubMed  CAS  Google Scholar 

  123. Yang S. D., Yu J. S., and Lai Y. G. (1991). Identification and characterization of the ATP.Mg-dependent protein phosphatase activator (FA) as a microtubule protein kinase in the brain, J. Prot. Chem 10, 171–181.

    CAS  Google Scholar 

  124. Kenessey A., Nacharaju P., Ko L. W., and Yen S. H. (1997). Degradation of tau by lysosomal enzyme cathepsin D: Implication for Alzheimer neurofibrillary degeneration, J. Neurochem. 69, 2026–2038.

    PubMed  CAS  Google Scholar 

  125. Shackelford D. A. and Nelson K. E. (1996). Changes in phosphorylation of tau during ischemia and reperfusion in the rabbit spinal cord, J. Neurochem. 66, 286–295.

    PubMed  CAS  Google Scholar 

  126. Canu N., Dus L., Barbato C., Ciotti M. T., Brancolini C., Rinaldi A. W., et al. (1998). Tau cleavage and dephosphorylation in cerebellar granule neurons undergoing apoptosis, J. Neurosci. 18, 7061–7074.

    PubMed  CAS  Google Scholar 

  127. Jenkins S. M., Zinnerman M., Garner C., and Johnson G. V. (2000). Modulation of tau phosphorylation and intracellular localization by cellular stress, Biochem. J. 345 Pt 2, 263–70.

    PubMed  CAS  Google Scholar 

  128. Spiegelman V. S., Slaga T. J., Pagano M., Minamoto T., Ronai Z., and Fuchs S. Y. (2000). Wnt/beta-catenin signaling induces the expression and activity of betaTrCP ubiquitin ligase receptor, Mol. Cell 5, 877–882.

    PubMed  CAS  Google Scholar 

  129. Mori H., Kondo J., and Ihara Y. (1987). Ubiquitin is a component of paired helical filaments in Alzheimer’s disease, Science 235, 1641–1644.

    PubMed  CAS  Google Scholar 

  130. Kosik K. S. and Caceres A. (1991). Tau protein and the establishment of an axonal morphology, J. Cell Sci. Suppl. 15, 69–74.

    PubMed  CAS  Google Scholar 

  131. Alonso A. D., Grundke-Iqbal I., Barra H. S., and Iqbal K. (1997). Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: sequestration of microtubule associated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau, Proc. Natl. Acad. Sci. USA 94, 298–303.

    PubMed  CAS  Google Scholar 

  132. Wischik C. M., Lai R. Y. K., and Harrington C. R. (1997) Modelling prion-like processing of tau protein in Alzheimer’s disease for pharmaceutical development, in Brain Microtubule Associated (Avila J., Brandt R., and Kosik K. S., eds.), Harwood Academic, Chur, Switzerland, pp. 185–241.

    Google Scholar 

  133. Nixon R. A., Cataldo A. M., Paskevich P. A., Hamilton D. J., Wheelock T. R., and Kanaley-Andrews L. (1992). The lysosomal system in neurons. Involvement at multiple stages of Alzheimer’s disease pathogenesis, Ann. NY Acad. Sci. 674, 65–88.

    PubMed  CAS  Google Scholar 

  134. Bi X., Yong A. P., Zhou J., Gall C. M., and Lynch G. (2000). Regionally selective changes in brain lysosomes occur in the transition from young adulthood to middle age in rats, Neuroscience 97, 395–404.

    PubMed  CAS  Google Scholar 

  135. Ebneth A., Godemann R., Stamer K., Illenberger S., Trinczek B., Mandelkow E. M., and Mandelkow E. (1998). Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: Implications for Alzheimer’s disease, J. Cell Biol. 143, 777–794.

    PubMed  CAS  Google Scholar 

  136. Terry R. D., Masliah E., Salmon D. P., Butters N., DeTeresa R., Hill R., et al. (1991). Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment, Ann. Neurol. 30, 572–580.

    PubMed  CAS  Google Scholar 

  137. Spillantini M. G. and Goedert M. (1998). Tau protein pathology in neurodegenerative diseases, TINS 21, 428–433.

    PubMed  CAS  Google Scholar 

  138. Schmidt M. L., Garruto R., Chen J., Lee V. M., and Trojanowski J. Q. (2000). Tau epitopes in spinal cord neurofibrillary lesions in Chamorros of Guam, Neuroreport 11, 3427–3430.

    PubMed  CAS  Google Scholar 

  139. Lee V. M. and Trojanowski J. Q. (2001). Transgenic mouse models of tauopathies: prospects for animal models of Pick’s disease, Neurology 56, S26-S30.

    PubMed  CAS  Google Scholar 

  140. Delacourte A. and Buee L. (1997) Normal and pathological Tau proteins as factors for microtubule assembly, in International Review of Cytol Vol. 171 (Jeon K. W., ed.), Academic Press, San Diego, CA, pp. 167–224.

    Google Scholar 

  141. Hasegawa M., Smith M. J., and Goedert M. (1998). Tau proteins with FTDP-17 mutations have a reduced ability to promote microtubule assembly, FEBS Lett 437, 207–210.

    PubMed  CAS  Google Scholar 

  142. Hong M., Zhukareva V., Vogelsberg-Ragaglia V., Wszolek Z., Reed L., Miller B. I., et al. (1998). Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17, Science 282, 1914–1917.

    PubMed  CAS  Google Scholar 

  143. Goedert M. and Spillantini M. G. (2000). Tau mutations in frontotemporal dementia FTDP-17 and their relevance for Alzheimer’s disease, Biochem. Biophys. Acta 1502, 110–121.

    PubMed  CAS  Google Scholar 

  144. Clark L. N., Poorkaj P., Wszolek Z., Geschwind D. H., Nasreddine Z. S., Miller B., et al., (1998). Pathogenic implications of mutations in the tau gene in pallido-pontonigral degeneration and related neurodegenerative disorders linked to chromosome 17. Proc. Natl. Acad. Sci. USA 95, 13103–13107.

    PubMed  CAS  Google Scholar 

  145. D’Souza I., Poorkaj P., Hong M., Nochlin D., Lee V. M., Bird T. D., and Schellenberg G. D. (1999). Missense and silent tau gene mutations cause frontotemporal dementia with parkinsonism-chromosome 17 type, by affecting multiple alternative RNA splicing regulatory elements, Proc. Natl. Acad. Sci. USA 96, 5598–5603.

    PubMed  CAS  Google Scholar 

  146. Hutton M., Lendon C. L., Rizzu P., Baker M., Froelich S., Houlden H., et al. (1998). Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17, Nature 393, 702–705.

    PubMed  CAS  Google Scholar 

  147. Poorkaj P., Bird T. D., Wijsman E., Nemens E., Garruto R. M., Anderson L., et al. (1998). Tau is a candidate gene for chromosome 17 frontotemporal dementia, Ann Neurol 43, 815–825.

    PubMed  CAS  Google Scholar 

  148. Spillantini M. G., Murrell J. R., Goedert M., Farlow M. R., Klug A., and Ghetti B. (1998). Mutation in the tau gene in familial multiple system tauopathy with presenile dementia, Proc. Natl. Acad. Sci. USA 95, 7737–7741.

    PubMed  CAS  Google Scholar 

  149. Stanford P. M., Halliday G. M., Brooks W. S., Kwok J. B., Storey C. E., Creasey H., et al. (2000). Progressive supranuclear palsy pathology caused by a novel silent mutation in exon 10 of the tau gene: expansion of the disease phenotype caused by tau gene mutations, Brain 123, 880–893.

    PubMed  Google Scholar 

  150. Hartmann A. M., Rujescu D., Giannakouros T., Nikolakaki E., Goedert M., Mandelkow E. M., et al. (2001). Regulation of alternative splicing of human tau exon 10 by phosphorylation of splicing factors, Mol. Cell Neurosci. 18, 80–90.

    PubMed  CAS  Google Scholar 

  151. Götz J., Probst A., Spillantini M. G., Schafer T., Jakes R., Burki K., and Goedert M. (1995). Somatodendritic localization and hyperphosphorylation of tau protein in transgenic mice expressing the longest human brain tau isoform, EMBO J. 14, 1304–1313.

    PubMed  Google Scholar 

  152. Brion J. P., Tremp G., and Octave J. N. (1999). Transgenic expression of the shortest human tau affects its compartmentalization and its phosphorylation as in the pretangle stage of Alzheimer’s disease, Am. J. Pathol. 154, 255–270.

    PubMed  CAS  Google Scholar 

  153. Ishihara T., Hong M., Zhang B., Nakagawa Y., Lee M. K., Trojanowski J. Q., and Lee V. M. (1999). Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform, Neuron 24, 751–762.

    PubMed  CAS  Google Scholar 

  154. Probst A., Gotz J., Wiederhold K. H., Tolnay M., Mistl C., Jaton A. L., et al. (2000). Axonopathy and amyotrophy in mice transgenic for human four-repeat tau protein, Acta Neuropathol. (Berl) 99, 469–481.

    CAS  Google Scholar 

  155. Lewis J., McGowan E., Rockwood J., Melrose H., Nacharaju P., Van Slegtenhorst M., et al. (2000). Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein, Nature Genet. 25, 402–405.

    PubMed  CAS  Google Scholar 

  156. Gotz J., Chen F., Barmettler R., and Nitsch R. M. (2001). Tau filament formation in transgenic mice expressing P301L tau, J. Biol. Chem. 276, 529–534.

    PubMed  CAS  Google Scholar 

  157. Lim F., Hernández F., Lucas J. J., Gómez-Ramos P., Morán M. A. and Avila J. (2001). FTDP-17 mutations in tau transgenic mice provoke lysosomal abnormalities and Tau filaments in forebrain, Mol. Cell Neurosci. 18(6), 702–714.

    PubMed  CAS  Google Scholar 

  158. Lewis J., Dickson D. W., Lin W. L., Chisholm L., Corral A., Jones G., et al. (2001). Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP, Science 293, 1487–1491.

    PubMed  CAS  Google Scholar 

  159. Gotz J., Chen F., van Dorpe J., and Nitsch R. M. (2001). Formation of neurofibrillary tangles in P3011 tau transgenic mice induced by Abeta 42 fibrils, Science 293, 1491–1495.

    PubMed  CAS  Google Scholar 

  160. Gotz J. (2001). Tau and transgenic animal models, Brain Res. Brain Res. Rev. 35, 266–286.

    PubMed  CAS  Google Scholar 

  161. Montejo de Garcini E., Serrano L., and Avila J. (1986). Self assembly of microtubule associated protein tau into filaments resembling those found in Alzheimer disease., Biochem. Biophys. Res. Commun. 141, 790–796.

    PubMed  CAS  Google Scholar 

  162. Montejo de Garcini E., Díez J. C., and Avila J. (1986). Quantitation and characterization of tau factor in porcine tissues., Biochim. Biophys. Acta 881, 456–461.

    PubMed  CAS  Google Scholar 

  163. Montejo de Garcini E. and Avila J. (1987). In vitro conditions for the self-polymerization of the microtubule-associated protein, tau factor., J. Biochem. 102, 1415–1421.

    PubMed  CAS  Google Scholar 

  164. Montejo de Garcini E., Carrascosa J. L., Correas I., Nieto A., and Avila J. (1988). Tau factor polymers are similar to paired helical filaments of Alzheimer’s disease, FEBS Lett. 236, 150–154.

    PubMed  CAS  Google Scholar 

  165. Crowther R. A., Olesen O. F., Jakes R., and Goedert M. (1992). The microtubule binding repeats of tau protein assemble into filaments like those found in Alzheimer’s disease, FEBS Lett. 309, 199–202.

    PubMed  CAS  Google Scholar 

  166. Wille H., Drewes G., Biernat J., Mandelkow E. M., and Mandelkow E. (1992). Alzheimer-like paired helical filaments and antiparallel dimers formed from microtubule-associated protein tau in vitro, J. Cell. Biol. 118, 573–584.

    PubMed  CAS  Google Scholar 

  167. Watanabe A., Takio K., and Ihara Y. (1999). Deamidation and isoaspartate formation in smeared tan in paired helical filaments — Unusual properties of the microtubule-binding domain of tau, J. Biol. Chem. 274, 7368–7378.

    PubMed  CAS  Google Scholar 

  168. Perry G., Siedlak S. L., Richey P., Kawai M., Cras P., Kalaria R. N., et al. (1991). Association of heparan sulfate proteoglycan with the neurofibrillary tangles of Alzheimer’s disease, J. Neurosci. 11, 3679–3683.

    PubMed  CAS  Google Scholar 

  169. Perez M., Valpuesta J. M., Medina M., Montejo de Garcini E., and Avila J. (1996). Polymerization of tau into filaments in the presence of heparin: the minimal sequence required for tau-tau interaction., J. Neurochem. 67, 1183–90.

    PubMed  CAS  Google Scholar 

  170. Goedert M., Jakes R., Spillantini M. G., Hasegawa M., Smith M. J., and Crowther R. A. (1996). Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans, Nature 383, 550–553.

    PubMed  CAS  Google Scholar 

  171. Goedert M., Spillantini M. G., Hasegawa M., Jakes R., Crowther R. A., and Klug A. (1996). Molecular dissection of the neurofibrillary lesions of Alzheimer’s disease, Cold Spring Harb. Symp. Quant. Biol. 61, 565–573.

    PubMed  CAS  Google Scholar 

  172. Kampers T., Friedhoff P., Biernat J., Mandelkow E. M., and Mandelkow E. (1996). RNA stimulates aggregation of microtubule-associated protein tau into Alzheimer-like paired helical filaments, FEBS Lett. 399, 344–349.

    PubMed  CAS  Google Scholar 

  173. Reynolds C. H., Betts J. C., Blackstock W. P., Nebreda A. R., and Anderton B. H. (2000). Phosphorylation sites on tau identified by nanoelectrospray mass spectrometry: differences in vitro between the mitogen-activated protein kinases ERK2, c-Jun N-terminal kinase and P38, and glycogen synthase kinase-3beta, J. Neurochem. 74, 1587–95.

    PubMed  CAS  Google Scholar 

  174. Arrasate M., Pérez M., Armas-Portela R., and Avila J. (1999). Polymerization of tau peptides into fibrillar structures. The effect of FTDP-17 mutations, FEBS Lett. 446, 199–202.

    PubMed  CAS  Google Scholar 

  175. Troncoso J. C., Costello A., Watson A. L., Jr., and Johnson G. V. (1993). In vitro polymerization of oxidized tau into filaments, Brain Res. 613, 313–316.

    PubMed  CAS  Google Scholar 

  176. Pérez M., Valpuesta J. M., de Garcini E. M., Quintana C., Arrasate M., López Carrascosa J. L., et al. (1998). Ferritin is associated with the aberrant tau filaments present in progressive supranuclear palsy., Am. J. Pathol. 152, 1531–1539.

    PubMed  Google Scholar 

  177. Pérez M., Wandosell F., Colaço C., and Avila J. (1998). Sulphated glycosaminoglycans prevent the neurotoxicity of a human prion protein fragment., Biochem. J. 335, 369–374.

    PubMed  Google Scholar 

  178. Wilson D. M. and Binder L. I. (1997). Free fatty acids stimulate the polymerization of tau and amyloid beta peptides. In vitro evidence for a common effector of pathogenesis in Alzheimer’s disease, Am. J. Pathol. 150, 2181–2195.

    PubMed  CAS  Google Scholar 

  179. Gamblin T. C., King M. E., Kuret J., Berry R. W., and Binder L. I. (2000). Oxidative regulation of fatty acid-induced tau polymerization, Biochemistry 39, 14203–14210.

    PubMed  CAS  Google Scholar 

  180. Winkler S., Wilson D., and Kaplan D. L. (2000). Controlling beta-sheet assembly in genetically engineered silk by enzymatic Phosphorylation/Dephosphorylation, Biochemistry 39, 12739–12746.

    PubMed  CAS  Google Scholar 

  181. Abraha A., Ghoshal N., Gamblin T. C., Cryns V., Berry R. W., Kuret J., and Binder L. I. (2000). C-terminal inhibition of & tgr; assembly in vitro and in Alzheimer’s disease, J. Cell. Sci. 113, 3737–3745.

    PubMed  CAS  Google Scholar 

  182. Ledesma M. D., Bonay P., Colaço C., and Avila J. (1994). Analysis of microtubule-associated protein tau glycation in paired helical filaments, J. Biol. Chem. 269, 21614–21619.

    PubMed  CAS  Google Scholar 

  183. Yan S. D., Chen X., Schmidt A. M., Brett J., Godman G., Zou Y. S., et al. (1994). Glycated tau protein in Alzheimer disease: a mechanism for induction of oxidant stress, Proc. Natl. Acad. Sci. USA 91, 7787–7791.

    PubMed  CAS  Google Scholar 

  184. Pérez M., Lim F., Arrasate M., and Avila J. (2000). The FTDP-17 -linked mutation R406W abolishes the interaction of phosphorylated tau with microtubules. J. Neurochem. 74, 2583–2589.

    PubMed  Google Scholar 

  185. Perez M., Cuadros R., Smith M. A., Perry G., and Avila J. (2000). Phosphorylated, but not native, tau protein assembles following reaction with the lipid peroxidation product, 4-hydroxy-2-nonenal, FEBS Lett. 486, 270–274.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jesús Ávila or A. Claudio Cuello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ávila, J., Lim, F., Moreno, F. et al. Tau function and dysfunction in neurons. Mol Neurobiol 25, 213–231 (2002). https://doi.org/10.1385/MN:25:3:213

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:25:3:213

Index Entries

Navigation