Skip to main content
Log in

Par-4

An emerging pivotal player in neuronal apoptosis and neurodegenerative disorders

  • Review
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Prostate apoptosis response-4 (Par-4) is a 38-kDa protein initially identified as the product of a gene upregulated in prostate tumor cells undergoing apoptosis. Par-4 contains both a death domain and a leucine zipper domain, and has been shown to interact with several proteins known to modulate apoptosis, including protein kinase Cζ, Bcl-2, and caspase-8. A rapid increase in Par-4 levels occurs in neurons undergoing apoptosis in a variety of paradigms, including trophic factor withdrawal, and exposure to oxidative and metabolic insults. Par-4, which can be induced at the translational level, acts at an early stage of the apoptotic cascade prior to caspase activation and mitochondrial dysfunction. The mechanism whereby Par-4 promotes apoptosis may involve inhibition of the antiapoptotic transcription factor NF-κB and suppression of Bcl-2 expression and/or function. Studies of postmortem tissues from patients and animal models of neurodegenerative disorders, including Alzheimer’s, Parkinson’s, and Huntington’s diseases, amyotrophic lateral sclerosis (ALS), and HIV encephalitis, have documented increased levels of Par-4 in vulnerable neurons. Manipulations that block Par-4 expression or function prevent neuronal cell death in models of each disorder, suggesting a critical role for Par-4 in the neurodegenerative process Interestingly, Par-4 levels rapidly increase in synaptic terminals following various insults, and such local increases in Par-4 levels appear to play important roles in synaptic dysfunction and degeneration. A better understanding of the molecular and cellular biology of Par-4 will help clarify mechanisms of neuronal apoptosis, and may lead to the development of novel preventative and therapeutic strategies for neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aguirre T., Van Den Bosch L., Goetschalckx K., Tilkin P., Mathijs G., Cassiman J. J., et al. (1998) Increased sensitivity of fibroblasts from amyotrophic lateral sclerosis patients to oxidative stress. Ann. Neurol. 43, 452–457.

    Article  PubMed  CAS  Google Scholar 

  • Alexi T., Hughes P. E., Knusel B., and Tobin A. J. (1998) Metabolic compromise with systemic 3-nitropropionic acid produces striatal apoptosis in Sprague-Dawley rats but not in BALB/c ByJ mice. Exp. Neurol. 153, 74–93.

    Article  PubMed  CAS  Google Scholar 

  • Ankarcrona M., Dypubkt J. M., Bonfoco E., Zhivotovsky B., Orrenius S., Lipton S. A., et al. (1995) Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15, 961–973.

    Article  PubMed  CAS  Google Scholar 

  • Anrather J., Csizmadia V., Soares M. P., and Winkler H. (1999) Regulation of NF-κB RelA phosphorylation and transcriptional activity by p21(ras) and protein kinase Cζ in primary endothelial cells. J. Biol. Chem. 274, 13,594–13,603.

    Article  CAS  Google Scholar 

  • Armstrong J. F., Pritchard-Jones K., Bickmore W. A., Hastie N. D., and Bard J. B. (1993) The expression of the Wilms’ tumour gene, WT1, in the developing mammalian embryo. Mech. Dev. 40, 85–97.

    Article  PubMed  CAS  Google Scholar 

  • Bandmann O., Marsden C. D., and Wood N. W. (1998) Genetic aspects of Parkinson’s disease. Mov. Disord. 13, 203–211.

    Article  PubMed  CAS  Google Scholar 

  • Barger S. W., Horster D., Furukawa K., Goodman Y., Krieglstein J., and Mattson M. P. (1995) Tumor necrosis factors α and β protect neurons against amyloid β-peptide toxicity: evidence for involvement of a κB-binding factor and attenuation of peroxide and Ca2+ accumulation. Proc. Natl. Acad. Sci. USA 92, 9328–9332.

    Article  PubMed  CAS  Google Scholar 

  • Beal, M. F. (1994) Neurochemistry and toxin models in Huntington’s disease. Curr. Opinion Neurol. 7, 542–547.

    Article  CAS  Google Scholar 

  • Beal M. F., Ferrante R. J., Browne S. E., Matthews R. T., Kowall N. W., and Brown R. H. (1997) Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Ann. Neurol. 42, 644–654.

    Article  PubMed  CAS  Google Scholar 

  • Berra E., Municio M. M., Sans L., Frutos S., Diaz-Meco M. T., and Moscat J. (1997) Positioning atypical protein kinase C isoforms in the UV-induced apoptotic signaling cascade. Mol. Cell. Biol. 17, 4346–4354.

    PubMed  CAS  Google Scholar 

  • Boghaert E. R., Sells S. F., Walid A. J., Malone A. P., Williams N. M., Winstein M. H., et al. (1997) Immunohistochemical analysis of the proapoptotic protein Par-4 in normal rat tissues. Cell Growth Differ. 8, 881–890.

    PubMed  CAS  Google Scholar 

  • Bruce-Keller A. J., Begley J. G., Fu W., Butterfield D. A., Bredesen D. E., Hutchins J. B., et al. (1997) Bcl-2 protects isolated plasma and mitochondrial membranes against lipid peroxidation induced by hydrogen peroxide and amyloid β-peptide. J. Neurochem. 70, 31–39.

    Article  Google Scholar 

  • Bruijn L. I., Beal M. F., Becher M. W., Schulz J. B., Wong P. C., Price D. L., et al. (1997) Elevated free nitrotyrosine levels, but not protein-bound nitrotyrosine or hydroxyl radicals, throughout amyotrophic lateral sclerosis (ALS)-like disease implicate tyrosine nitration as an aberrant in vivo property of one familial ALS-linked superoxide dismutase 1 mutant. Proc. Natl. Acad. Sci. USA 94, 7606–7611.

    Article  PubMed  CAS  Google Scholar 

  • Chan S. L. and Mattson M. P. (1999) Caspase and calpain substrates: roles in synaptic plasticity and cell death. J. Neurosci. Res. 58, 167–190.

    Article  PubMed  CAS  Google Scholar 

  • Chan S. L., Tammariello S. P., Estus S., and Mattson M. P. (1999) Par-4 mediates trophic factor withdrawal-induced apoptosis of hippocampal neurons: actions prior to mitochondrial dysfunction and caspase activation. J. Neurochem. 73, 502–512.

    Article  PubMed  CAS  Google Scholar 

  • Chou S. M., Wang H. S., Taniguchi A., and Bucala R. (1998) Advanced glycation endproducts in neurofilament conglomeration of motoneurons in familial and sporadic amyotrophic lateral sclerosis. Mol. Med. 4, 324–332.

    PubMed  CAS  Google Scholar 

  • Cudkowicz M. E., McKenna-Yasek D., Sapp P. E., Chin W., Geller B. Hayden D. L., et al. (1997) Epidemiology of mutations in superoxide dismutase in amyotrophic lateral sclerosis. Ann. Neurol. 41, 210–221.

    Article  PubMed  CAS  Google Scholar 

  • Deveraux Q. L. and Reed J. C. (1999) Inhibitor of apoptosis proteins (IAPs), in Programmed Cell Death, vol. 1. (Mattson M. P., Rangnekar V., and Estus S., eds.), JAI, Greenwich, CT, in press.

  • Deveraux Q. L., Roy N., Stennicke H. R., Van Arsdale T., Zhou Q., Srinivasula S. M., et al. (1998) IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J. 17, 2215–2223.

    Article  PubMed  CAS  Google Scholar 

  • Diaz-Meco M. T., Municio M. M., Frutos S., Sanchez P., Lozano J., Sanz L., et al. (1996) The product of par-4, a gene induced during apoptosis, interacts selectively with the atypical isoforms of protein kinase C. Cell 86, 777–786.

    Article  PubMed  CAS  Google Scholar 

  • Duan W., Rangnekar V., and Mattson M. P. (1999a) Par-4 production in synaptic compartments following apoptotic and excitotoxic insults: evidence for a pivotal role in mitochondrial dysfunction and neuronal degeneration. J. Neurochem. 72, 2312–2322.

    Article  PubMed  CAS  Google Scholar 

  • Duan W., Zhang Z., Gash D. M., and Mattson M. P. (1999b) Participation of Par-4 in degeneration of dopaminergic neurons in models of Parkinson’s disease. Ann. Neurol. in press.

  • Frutos S., Moscat J., and Diaz-Meco M. T. (1999) Cleavage of zetaPKC but not lambda/iotaPKC by caspase-3 during UV-induced apoptosis. J. Biol. Chem. 274, 10,765–10,770.

    Article  CAS  Google Scholar 

  • Greenlund L. J., Deckwerth T. L., and Johnson E. M. (1995) Superoxide dismutase delays neuronal apoptosis: a role for reactive oxygen species in programmed neuronal death. Neuron 14, 303–315.

    Article  PubMed  CAS  Google Scholar 

  • Guo Q., Furukawa K., Sopher B. L., Pham D. G., Robinson N., Martin G. M., et al. (1996) Alzheimer’s PS-1 mutation perturbs calcium homeostasis and sensitizes PC12 cells to death induced by amyloid β-peptide. NeuroReport 8, 379–383.

    Article  PubMed  CAS  Google Scholar 

  • Guo Q., Sopher B. L., Pham D. G., Furukawa K., Robinson N., Martin G. M., et al. (1997) Alzheimer’s presenilin mutation sensitizes neural cells to apoptosis induced by trophic factor withdrawal and amyloid β-peptide: involvement of calcium and oxyradicals. J. Neurosci. 17, 4212–4222.

    PubMed  CAS  Google Scholar 

  • Guo Q., Fu W., Xie J., Luo H., Sells S. F., Geddes J. W., et al. (1998) Par-4 is a mediator of neuronal degeneration associated with the pathogenesis of Alzheimer’s disease. Nature Med. 4, 957–962.

    Article  PubMed  CAS  Google Scholar 

  • Guo Q., Chan S. L., and Kruman I. (1999a) The Bcl-2 family of proteins and their actions within the molecular machinery of cell death, in Programmed Cell Death, vol. 1. (Mattson M. P., Rangnekar V., and Estus, S., eds), JAI, Greenwich, CT, in press.

  • Guo Q., Fu W., Sopher B. L., Miller M. W., Ware C. B., Martin, G. M., et al. (1999b) Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin-1 mutant knockin mice. Nature Med. 5, 101–107.

    Article  PubMed  CAS  Google Scholar 

  • Gurney M. E., Pu H., Chiu A. Y., Dal Canto M. C., Polchow C. Y., Alexander D. D., et al. (1994) Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264, 1772–1775.

    Article  PubMed  CAS  Google Scholar 

  • Jenner P. and Olanow C. W. (1998) Understanding cell death in Parkinson’s disease. Ann. Neurol. 44, S72–84.

    PubMed  CAS  Google Scholar 

  • Johnstone R. W., See R. H., Sells S. F., Wang J., Muthukkumar S., Englert C., et al. (1996) A novel repressor, Par-4, modulates transcription and growth suppression functions of the Wilms tumor suppressor WT1. Mol. Cell. Biol. 16, 6945–6956.

    PubMed  CAS  Google Scholar 

  • Johnstone R. W., Tommerup N., Hansen C., Vissing H., and Shi Y. (1998) Mapping of the human PAWR (par-4) gene to chromosome 12q21. Genomics 53, 241–243.

    Article  PubMed  CAS  Google Scholar 

  • Keller J. N., Pang Z., Geddes J. W., Begley J. G., Germeyer A., Waeg G., et al. (1997) Impairment of glucose and glutamate transport and induction of mitochondrial oxidative stress and dysfunction in synaptosomes by amyloid-β peptide: Role of the lipid peroxidation product 4-hydroxynonenal. J. Neurochem. 69, 273–284.

    Article  PubMed  CAS  Google Scholar 

  • Keller J. N., Kindy M. S., Holtsberg F. W., St Clair D. K., Yen H. C., Germeyer A., Steiner S. M., et al. (1998) Mitochondrial MnSOD prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation and mitochondrial dysfunction. J. Neurosci. 18, 687–697.

    PubMed  CAS  Google Scholar 

  • Kruman I., Bruce-Keller A. J., Bredesen D. E., Waeg G., and Mattson M. P. (1997) Evidence that 4-hydroxynonenal mediates oxidative stress-induced neuronal apoptosis. J. Neurosci. 17, 5089–5100.

    PubMed  CAS  Google Scholar 

  • Kruman I., Guo Q., and Mattson M. P. (1998) Calcium and reactive oxygen species mediate staurosporine-induced mitochondrial dysfunction and apoptosis in PC12 cells. J. Neurosci. Res. 51, 293–308.

    Article  PubMed  CAS  Google Scholar 

  • Kruman I., Pang Z., Geddes J. W., and Mattson M. P. (1999a) Pivotal role of mitochondrial calcium uptake in neural cell apoptosis and necrosis. J. Neurochem. 72, 529–540.

    Article  PubMed  CAS  Google Scholar 

  • Kruman I., Nath A., Maragos W. F., Chan S. L., Jones M., Rangnekar V. M., et al. (1999b) Evidence that Par-4 participates in the pathogenesis of HIV encephalitis. Am. J. Pathol. 155, 39–46.

    PubMed  CAS  Google Scholar 

  • Langston J. W. (1998) Epidemiology versus genetics in Parkinson’s disease: progress in resolving an age-old debate. Ann. Neurol. 44, S45-S52.

    Article  PubMed  CAS  Google Scholar 

  • Mark R. J., Hensley K., Butterfield D. A., and Mattson M. P. (1995) Amyloid β-peptide impairs ionmotive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death. J. Neurosci. 15, 6239–6249.

    PubMed  CAS  Google Scholar 

  • Mark R. J., Lovell M. A., Markesbery W. R., Uchida K., and Mattson M. P. (1997a) A role for 4- hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid β-peptide. J. Neurochem. 68, 255–264.

    Article  PubMed  CAS  Google Scholar 

  • Mark R. J., Pang Z., Geddes J. W., Uchida K., and Mattson M. P. (1997b) Amyloid β-peptide impairs glucose uptake in hippocampal and cortical neurons: Involvement of membrane lipid peroxidation. J. Neurosci. 17, 1046–1054.

    PubMed  CAS  Google Scholar 

  • Mattson M. P. (1997) Cellular actions of β-amyloid precursor protein, and its soluble and fibrillogenic peptide derivatives. Physiol. Rev. 77, 1081–1132.

    PubMed  CAS  Google Scholar 

  • Mattson M. P. and Duan W. (1999) Biochemical cascades in synaptic compartments: roles in adaptive plasticity and neurodegenerative disorders. J. Neurosci. Res. 58, 152–166.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P. and Goodman Y. (1995) Different amyloidogenic peptides share a similar mechanism of neurotoxicity involving reactive oxygen species and calcium. Brain Res. 676, 219–224.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P., Cheng B., Davis D., Bryant K., Lieberburg I., and Rydel R. E. (1992) β-amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J. Neurosci. 12, 376–389.

    PubMed  CAS  Google Scholar 

  • Mattson M. P., Tomaselli K., and Rydel R. E. (1993) Calcium-destabilizing and neurodegenerative effects of aggregated b-amyloid peptide are attenuated by basic FGF. Brain Res. 621, 35–49.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P., Keller J. N., and Begley J. G. (1998) Evidence for synaptic apoptosis. Exp. Neurol. 153, 35–48.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P., Culmsee C., Yu Z., and Camandola S. (1999) Roles of NF-κB in neuronal survival and plasticity. J. Neurochem. in press.

  • Menke A. L., van der Eb A. J., and Jochemsen A. G. (1998) The Wilms’ tumor 1 gene: oncogene or tumor suppressor gene? Int. Rev. Cytol. 181, 151–212.

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki H., Goto K., Mori H., and Mizuno Y. (1996) Histochemical detection of apoptosis in Parkinson’s disease. J. Neurol. Sci. 137, 120–123.

    Article  PubMed  CAS  Google Scholar 

  • Moratalla R., Quinn B., DeLanney L. E., Irwin I., Langston J. W., and Graybiel A. M. (1992) Differential vulnerability of primate caudate-putamen and striosome-matrix dopamine systems to the neurotoxic effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc. Natl. Acad. Sci. USA 89, 3859–3863.

    Article  PubMed  CAS  Google Scholar 

  • Mu X., He J., Anderson D. W., Trojanowski J. Q., and Springer J. E. (1996) Altered expression of bcl-2 and bax mRNA in amyotrophic lateral sclerosis spinal cord motor neurons. Ann. Neurol. 40, 379–386.

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim R. W. (1991) Cell death during development of the nervous system. Annu. Rev. Neurosci. 14, 453–501.

    Article  PubMed  CAS  Google Scholar 

  • Pedersen W. A., Luo H., Kruman I., Kasarskis E., and Mattson M. P. (1999) Involvement of the prostate apoptosis response-4 (Par-4) protein in motor neuron degeneration in ALS. Soc. Neurosci. Abst. 25, 49.

    Google Scholar 

  • Petersen A., Mani K., and Brundin P. (1999) Recent advances on the pathogenesis of Huntington’s disease. Exp. Neurol. 157, 1–18.

    Article  PubMed  CAS  Google Scholar 

  • Portera-Cailliau C., Hedreen J. C., Price D. L., and Koliatsos V. E. (1995) Evidence for apoptotic cell death in Huntington disease and excitotoxic animal models. J. Neurosci. 15, 3775–3787.

    PubMed  CAS  Google Scholar 

  • Puls A., Schmidt S. S., Grawe F., and Stabel S. (1997) Interaction of protein kinase C zeta with ZIP, a novel protein kinase C-binding protein. Proc. Natl. Acad. Sci. USA 94, 6191–6196.

    Article  PubMed  CAS  Google Scholar 

  • Qiu G., Ahmed M., Sells S. F., Mohiuddin M., Weinstein M. H., and Rangnekar V. M. (1999) Oncogene Mutually exclusive expression patterns of Bcl-2 and Par-4 in human prostate tumors consistent with down-regulation of Bcl-2 by Par-4. 18, 623–631.

    CAS  Google Scholar 

  • Rabizadeh S., Gralla E. B., Borchelt D. R., Gwinn R., Valentine J. S., Sisodia S., et al. (1995) Mutations associated with amyotrophic lateral sclerosis convert superoxide dismutase from an antiapoptotic gene to a proapoptotic gene: Studies in yeast and neural cells. Proc. Natl. Acad. Sci. USA 92, 3024–3028.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez I., Xu C. J., Juo P., Kakizaka A., Blenis J., and Yuan, J. (1999) Caspase-8 is required for cell death induced by expanded polyglutamine repeats. Neuron 22, 623–633.

    Article  PubMed  CAS  Google Scholar 

  • Saudou F., Finkbeiner S., Devys D., and Greenberg M. E. (1998) Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95, 55–66.

    Article  PubMed  CAS  Google Scholar 

  • Schapira A. H., Gu M., Taanman J. W., Tabrizi S. J., Seaton T., Cleeter M., et al. (1998) Mitochondria in the etiology and pathogenesis of Parkinson’s disease. Ann. Neurol. 44, S89–98.

    PubMed  CAS  Google Scholar 

  • Sells S. F., Wood D. P., Joshi-Barve S. S., Muthukkumar S., Jacob R. J., Crist S. A., et al. (1994) Commonality of the gene programs induced by effectors of apoptosis in androgen-dependent and -independent prostate cells. Cell Growth Differ. 5, 457–466.

    PubMed  CAS  Google Scholar 

  • Sells S. F., Han S. S., Muthukkumar S., Maddiwar N., Johnstone R., Boghaert E., et al. (1997) Expression and function of the leucine zipper protein Par-4 in apoptosis. Mol. Cell. Biol. 17, 3823–3832.

    PubMed  CAS  Google Scholar 

  • Shih S. C., Mullen A., Abrams K., Mukhopadhyay D., and Claffey K. P. (1999) Role of protein kinase C isoforms in phorbol ester-induced vascular endothelial growth factor expression in human glioblastoma cells. J. Biol. Chem. 274, 15,407–15,414.

    CAS  Google Scholar 

  • Steller, H. (1995) Mechanisms and genes of cellular suicide. Science 267, 1445–1449.

    Article  PubMed  CAS  Google Scholar 

  • Taglialatela G., Robinson R., and Perez-Polo J. R. (1997) Inhibition of nuclear factor κB (NFκB) activity induces nerve growth factor-resistant apoptosis in PC12 cells. J. Neurosci. Res. 47, 155–162.

    Article  PubMed  CAS  Google Scholar 

  • Tamatani M., Che Y. H., Matsuzaki H., Ogawa S., Okado H., Miyake S., et al. (1999) Tumor necrosis factor induces bcl-2 and bcl-x expression through NFκB activation in primary hippocampal neurons. J. Biol. Chem. 274, 8531–8538.

    Article  PubMed  CAS  Google Scholar 

  • Wiedau-Pazos M., Goto J. J., Rabizadeh S., Gralla E. B., Roe J. A., Lee M. K., et al. (1996) Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis. Science 271, 515–518.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattson, M.P., Duan, W., Chan, S.L. et al. Par-4. J Mol Neurosci 13, 17–30 (1999). https://doi.org/10.1385/JMN:13:1-2:17

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:13:1-2:17

Index Entries

Navigation