Skip to main content
Log in

Tubulin is the target binding site for NAP-related peptides

ADNF-9, d-NAP, and d-SAL

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The authors set out to investigate whether NAP-related peptides interact with tubulin at a NAP binding site. Previous studies have shown that the neuroprotective peptide NAP binds to tubulin. As NAP (NAPVSIPQ) shares structural similarities with ADNF-9 (SALLRSIPA), and the all-d-enantiomers, d-NAP and d-SAL, it was hypothesized that all of these peptides compete with NAP-tubulin binding. Using NAP affinity column and extracts from newborn rat brain (cerebral cortex), we now show that the above-mentioned peptides compete with NAP binding to tubulin. The identification of tubulin as a target binding site for NAP-related peptides explains, in part, the broad neuroprotective activity offered by these potent peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bassan M., Zamostiano R., Davidson A., et al. (1999) Complete sequence of a novel protein containing a femtomolar-activity-dependent neuroprotective peptide. J. Neurochem. 72, 1283–1293.

    Article  PubMed  CAS  Google Scholar 

  • Blondel O., Collin C. McCarran W. J., et al. (2000) A gliaderived signal regulating neuronal differentiation. J. Neurosci. 20, 8012–8020.

    PubMed  CAS  Google Scholar 

  • Brenneman D. E. and Eiden L. E. (1986) Vasoactive intestinal peptide and electrical activity influence neuronal survival, Proc. Natl. Acad. Sci. U. S. A. 83, 1159–1162.

    Article  PubMed  CAS  Google Scholar 

  • Brenneman D. E. and Gozes I. (1996) Afemtomolar-acting neuroprotective peptide. J. Clin. Invest., 97, 2299–2307.

    Article  PubMed  CAS  Google Scholar 

  • Brenneman D. E., Hauser J., Neale E., et al. (1998). Activity-dependent neurotrophic factor: structure-activity relationships of femtomolar-acting peptides. J. Pharmacol. Exp. Ther. 185, 619–627.

    Google Scholar 

  • Brenneman D. E., Spong C. Y., Hauser J. M., et al. (2004) Protective peptides that are orally active and mechanistically nonchiral, J. Pharmacol. Exp. Ther. 309, 1190–1197.

    Article  PubMed  CAS  Google Scholar 

  • Divinski I., Mittelman, L., and Gozes, I. (2004). A femtomolar acting octapeptide interacts with tubulin and protects astrocytes against zinc intoxication. J. Biol. Chem. 279, 28, 531–538.

    Google Scholar 

  • Furman S., Steingart R. A., Mandel S., Hauser J. M., Brenneman D. E., and Gozes I. (2004) Subcellular localization and secretion of activity-dependent neuroprotective protein in astrocytes. Neuron Glia Biology, 1, 193–199.

    Article  PubMed  Google Scholar 

  • Gozes I. and Littauer U. Z. (1978). Tubulin microheterogeneity increases with rat brain maturation. Nature 276, 411–413.

    Article  PubMed  CAS  Google Scholar 

  • Gozes I. and Sweadner K. J. (1981). Multiple tubulin forms are expressed by a single neurone. Nature, 294, 477–480.

    Article  PubMed  CAS  Google Scholar 

  • Gozes I. and Barnstable, C. J. (1982). Monoclonal antibodies that recognize discrete forms of tubulin. Proc. Natl. Acad. Sci. U. S. A., 79, 2579–2583.

    Article  PubMed  CAS  Google Scholar 

  • Gozes I. and Littauer U. Z. (1982). Microtubule protein: tubulin. Scand. J. Immunol. 9 (Suppl.), 299–316.

    Article  CAS  Google Scholar 

  • Gozes I., Bardea A., Reshef A., et al. (1996) Neuroprotective strategy for Alzheimer disease: intranasal administration of a fatty neuropeptide. Proc Natl Acad Sci U. S. A., 93, 427–432.

    Article  PubMed  CAS  Google Scholar 

  • Gozes I. and Brenneman D. E. (1996) Activity-dependent neurotrophic factor (ADNF). An extracellular neuroprotective chaperonin? J. Mol. Neurosci. 7, 235–44.

    Article  PubMed  CAS  Google Scholar 

  • Gozes I., Bachar M., Bardea A., et al. (1997) Protection against developmental retardation in apolipoprotein E-deficient mice by a fatty neuropeptide: implications for early treatment of Alzheimer's disease. J. Neurobiol. 33, 329–342.

    Article  PubMed  CAS  Google Scholar 

  • Gozes I. and Brenneman D. E. (2000) A new concept in the pharmacology of neuroprotection. J. Mol. Neurosci. 14, 61–68.

    Article  PubMed  CAS  Google Scholar 

  • Gozes I., Steingart R. A., and Spier A. D. (2004) NAP mechanisms of neuroprotection. J. Mol. Neurosci. 24, 67–72.

    Article  PubMed  CAS  Google Scholar 

  • Gozes I. and Divinski I. (2004). The femtomolar-acting NAP interacts with microtubules: Novel aspects of astrocyte protection. J. Alzheimers Dis. 6, S37-S41.

    PubMed  CAS  Google Scholar 

  • Gozes I., Zaltzman R., Hauser J., Brenneman D. E., Shohami E., and Hill J. M. (2005) The expression of activity-dependent neuroprotective protein (ADNP) is regulated by brain damage and treatment of mice with the ADNP derived peptide, NAP, reduces the severity of traumatic head injury. Curr. Alzheimer Res. 2, 149–153.

    Article  PubMed  CAS  Google Scholar 

  • Glazner G. W., Boland A., Dresse A. E., Brenneman D. E., Gozes I., and Mattson M. P. (1999) Activity-dependent neurotrophic factor peptide (ADNF9) protects neurons against oxidative stress-induced death. J. Neurochem. 73, 2341–2347.

    Article  PubMed  CAS  Google Scholar 

  • Glazner G. W., Gressens P., Lee S. J., et al. (1999) Activity-dependent neurotrophic factor: a potent regulator of embryonic growth and development. Anat. Embryol. (Berl). 200, 65–71.

    Article  CAS  Google Scholar 

  • Glazner G. W. and Mattson M. P. (2000) Differential effects of BDNF, ADNF9, and TNFalpha on levels of NMDA receptor subunits, calcium homeostasis, and neuronal vulnerability to excitotoxicity. Exp. Neurol., 161, 442–452.

    Article  PubMed  CAS  Google Scholar 

  • Gressens P., Hill J. M., Gozes I., Fridkin M., and Brenneman D. E. (1993) Growth factor function of vasoactive intestinal peptide in whole cultured mouse embryos. Nature 362, 155–158.

    Article  PubMed  CAS  Google Scholar 

  • Guo Q., Sebastian L., Sopher B. L., et al. (1999) Neurotrophic factors [activity-dependent neurotrophic factor (ADNF) and basic fibroblast growth factor (bFGF)] interrupt excitotoxic neurodegenerative cascades promoted by a PS1 mutation. Proc. Natl. Acad. Sci. U.S.A. 96, 4125–4130.

    Article  PubMed  CAS  Google Scholar 

  • Guo Z. H. and Mattson M. P. (2000) Neurotrophic factors protect cortical synaptic terminals against amyloid and oxidative stress-induced impairment of glucose transport, glutamate transport and mitochondrial function. Cereb. Cortex 10, 50–57.

    Article  PubMed  CAS  Google Scholar 

  • Offen D., Sherki Y., Melamed E., Fridkin M., Brenneman D. E., and Gozes I. (2000) Vasoactive intestinal peptide (VIP) prevents neurotoxicity in neuronal cultures: relevance to neuroprotection in Parkinson's disease. Brain Res. 854, 257–262.

    Article  PubMed  CAS  Google Scholar 

  • Pinhasov A., Mandel S., Torchinsky A., et al. (2003). Activity-dependent neuroprotective protein: a novel gene essential for brain formation. Brain Res. Dev. Brain Res. 144, 83–90.

    Article  PubMed  CAS  Google Scholar 

  • Roy S., Zhang B., Lee V. M., and Trojanowski J. Q. (2005) Axonal transport defects: a common theme in neurodegenerative diseases. Acta Neuropathol. (Berl). 109, 5–13.

    Article  Google Scholar 

  • Spong C. Y., Abebe D. T., Gozes I., Brenneman D. E., and Hill J. M. (2001) Prevention of fetal demise and growth restriction in a mouse model of fetal alcohol syndrome. J. Pharmacol. Exp. Ther. 297, 774–779.

    PubMed  CAS  Google Scholar 

  • Steingart R. A., Solomon B., Brenneman D. E., Fridkin M., and Gozes I. (2000) VIP and peptides related to activity-dependent neurotrophic factor protect PC12 cells against oxidative stress. J. Mol. Neurosci. 15, 137–145.

    Article  PubMed  CAS  Google Scholar 

  • White D. M., Walker S., Brenneman D. E., and Gozes I. (2000) CREB contributes to the increased neurite outgrowth of sensory neurons induced by vasoactive intestinal polypeptide and activity-dependent neurotrophic factor. Brain Res. 868, 31–38.

    Article  PubMed  CAS  Google Scholar 

  • Wilkemeyer M. F., Chen S. Y., Menkari C. E., Brenneman D. E., Sulik K. K., and Charness M. E. (2003) Differential effects of ethanol antagonism and neuroprotection in peptide fragment NAPVSIPQ prevention of ethanol-induced developmental toxicity. Proc. Natl. Acad. Sci. U.S.A., 100, 8543–8548.

    Article  PubMed  CAS  Google Scholar 

  • Zamostiano R., Pinhasov A., Gelberg E., et al. (2001). Cloning and characterization of the human activity-dependent neuroprotective protein. J. Biol. Chem., 276, 708–714.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Illana Gozes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holtser-Cochav, M., Divinski, I. & Gozes, I. Tubulin is the target binding site for NAP-related peptides. J Mol Neurosci 28, 303–307 (2006). https://doi.org/10.1385/JMN:28:3:303

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:28:3:303

Index Entries

Navigation