Skip to main content
Log in

ARP, the cleavable C-terminal peptide of “readthrough” acetylcholinesterase, promotes neuronal development and plasticity

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The mammalian acetylcholinesterase (ACHE) gene gives rise to diverse enzymatically active proteins with three different carboxyl termini. In the brain, the normally rare readthrough AChE-R monomer accumulates under embryonic development and in adults following psychological stress, head injury, or exposure to AChEs. In the prenatal developing cortex, its unique C-terminal peptide ARP associates with radial glial fibers supporting neuronal migration. In contrast, the major synaptic AChE-S variant appears in the migrating neurons themselves. Moreover, antisense suppression of AChE-R attenuates neuronal migration, allowing increased proliferation of neuronal progenitors. In the adult brain, neuronal AChE-R is either secreted or accumulates intraneuronally, where it interacts through ARP with the scaffold protein RACK1 and activated PKC-ßII. This associates with increased PKC-ßII activity, which shuttles to submembranal clusters (e.g., in hyperactivated hippocampal neurons). Cleavage yields the AChE-R-specific C-terminal peptide, including immunopositive ARP. Importantly, intrahippocampal injection of synthetic ARP was followed by its efficient neuronal penetration and retrograde transport into cortical and basal nuclei neurons. Moreover, ARP-injected mice presented increased stress-induced contextual fear, inhibitable by antisense suppression of AChE-R mRNA. Together, our findings point at the cleavable ARP peptide as a key regulator of neuronal development and plasticity and suggest its use as a drug target and/or research and therapeutic tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andres C., Beeri R., Friedman A., Lev Lehman E., Henis S., Timberg R., et al. (1997) Acetylcholinesterase-transgenic mice display embryonic modulations in spinal cord choline acetyltransferase and neurexin Ibeta gene expression followed by late-onset neuromotor deterioration. Proc. Natl. Acad. Sci. U. S. A. 94, 8173–8178.

    Article  PubMed  CAS  Google Scholar 

  • Bausero P., Schmitt M., Toussaint J.L., Simoni P., Geoffroy V., Queuche D., et al. (1993) Identification and analysis of the human choline acetyltransferase gene promoter. Neuroreport 4, 287–290.

    Article  PubMed  CAS  Google Scholar 

  • Beeri R., Andres C., Lev Lehman E., Timberg R., Huberman T., Shani M., and Soreq H. (1995). Transgenic expression of human acetylcholinesterase induces progressive cognitive deterioration in mice. Curr. Biol. 5, 1063–1071.

    Article  PubMed  CAS  Google Scholar 

  • Beeri R., Le Novere N., Mervis R., Huberman T., Grauer E., Changeux J.P., and Soreq H. (1997) Enhanced hemicholinium binding and attenuated dendrite branching in cognitively impaired acetylcholinesterase-transgenic mice. J. Neurochem. 69, 2441–2451.

    Article  PubMed  CAS  Google Scholar 

  • Ben Aziz Aloya R., Seidman S., Timberg R., Sternfeld M., Zakut H., and Soreq H. (1993) Expression of a human acetylcholinesterase promoter-reporter construct in developing neuromuscular junctions of Xenopus embryos. Proc. Natl. Acad. Sci. U. S. A. 90, 2471–2475.

    Article  PubMed  CAS  Google Scholar 

  • Birikh K. R., Sklan E. H., Shoham S., and Soreq H. (2003) Interaction of “readthrough” acetylcholinesterase with RACK1 and PKCbeta II correlates with intensified fear-induced conflict behavior. Proc. Natl. Acad. Sci. U. S. A. 100, 283–288.

    Article  PubMed  CAS  Google Scholar 

  • Cervini R., Houhou L., Pradat P.F., Bejanin S., Mallet J., and Berrard S. (1995) Specific vesicular acetylcholine transporter promoters lie within the first intron of the rat choline acetyltransferase gene. J. Biol. Chem. 270, 24654–24657.

    Article  PubMed  CAS  Google Scholar 

  • Cohen O., Erb C., Ginzberg D., Pollak Y., Seidman S., Shoham S., et al. (2002) Neuronal overexpression of “readthrough” acetylcholinesterase is associated with antisense-suppressible behavioral impairments. Mol. Psychiatry 7, 874–885.

    Article  PubMed  CAS  Google Scholar 

  • Cohen O., Reichenberg A., Perry C., Ginzberg D., Pollmacher T., Soreq H., and Yirmiya R. (2003) Endotoxin-induced changes in human working and declarative memory associate with cleavage of plasma “readthrough” acetylcholinesterase. J. Mol. Neurosci. 21, 199–212.

    Article  PubMed  CAS  Google Scholar 

  • Dentsch V.R., Pick M., Perry C., Grisaru D., Hemo Y., Golan-Hadari D., et al. (2002) The stress-associated acetylcholinesterase variant AChE-R is expressed in human CD34(+) hematopoietic progenitors and its C-terminal peptide ARP promotes their proliferation. Exp. Hematol. 30, 1153–1161.

    Article  Google Scholar 

  • Dori A., Cohen J., Silverman W.F., Pollack Y., and Soreq H. (2005) Functional manipulations of acetyl-cholinesterase splice variants highlight alternative splicing contributions to murine neocortical development. Cereb. Cortex 15, 419–430.

    Article  PubMed  Google Scholar 

  • Ennis M. and Shipley M.T. (1992) Tonicactivation of locus coeruleus neurons by systemic or intracoerulear microinjection of an irreversible acetylcholinesterase inhibitor: increased discharge rate and induction of c-fos. Exp. Neurol. 118, 164–177.

    Article  PubMed  CAS  Google Scholar 

  • Gadisseux J.F., Evrard P., Misson J.P., and Caviness V.S. (1989) Dynamic structure of the radial glial fiber system of the developing murine cerebral wall. An immunocytochemical analysis. Brain Res. Dev. Brain Res. 50, 55–67.

    Article  PubMed  CAS  Google Scholar 

  • Gray J. A. (2000) The Neuropsychology of Anxiety: An Inquiry into the Functions of the Septo-Hippocampal System, Oxford University Press, Oxford, UK.

    Google Scholar 

  • Grifman M. and Soreq H. (1997) Differentiation intensifies the susceptibility of pheochromocytoma cells to antisense oligodeoxynucleotide-dependent suppression of acetylcholinesterase activity. Antisense Nucleic Acid Drug Dev. 7, 351–359.

    PubMed  CAS  Google Scholar 

  • Grifman M., Galyam N., Seidman S., and Soreq H. (1998) Functional redundancy of acetylcholinesterase and neuroligin in mammalian neuritogenesis. Proc. Natl. Acad. Sci. U. S. A. 95, 13935–13940.

    Article  PubMed  CAS  Google Scholar 

  • Grisaru D., Deutsch V., Shapira M., Pick M., Sternfeld M., Melamed-Book N., et al. (2001) ARP, a peptide derived from the stress-associated acetylcholinesterase variant, has hematopoietic growth promoting activities. Mol. Med. 7, 93–105.

    PubMed  CAS  Google Scholar 

  • Holmes C., Jones S.A., Budd T.C., and Greenfield S.A. (1997) Non-cholinergic, trophic action of recombinant acetylcholinesterase on mid-brain dopaminergic neurons. J. Neurosci. Res. 49, 207–218.

    Article  PubMed  CAS  Google Scholar 

  • Imperato A., Puglisi-Allegra S., Casolini P., and Angelucci L. (1991) Changes in brain dopamine and acetylcholine release during and following stress are independent of the pituitary-adrenocorticalaxis. Brain Res. 538, 111–117.

    Article  PubMed  CAS  Google Scholar 

  • Kaufer D., Friedman A., Seidman S., and Soreq H. (1998) Acute stress facilitates long-lasting changes in cholinergic gene expression. Nature 393, 373–377.

    Article  PubMed  CAS  Google Scholar 

  • Koenigsberger C., Chiappa S., and Brimijoin S. (1997) Neurite differentiation is modulated in neuroblastoma cells engineered for altered acetylcholinesterase expression. J. Neurochem. 69, 1389–1397.

    Article  PubMed  CAS  Google Scholar 

  • Lauder J.M. and Schambra U.B. (1999) Morphogenetic roles of acetylcholine. Environ. Health Perspect. 107, 65–69.

    Article  PubMed  CAS  Google Scholar 

  • Lev-Lehman E., Evron T., Broide R.S., Meshorer E., Ariel I., Seidman S., and Soreq H. (2000) Synaptogenesis and myopathy under acetylcholinesterase overexpression. J. Mol. Neurosci. 14, 93–105.

    Article  PubMed  CAS  Google Scholar 

  • Li Y., Camp S., Rachinsky T.L., Bongiorno C., and Taylor P. (1993) Promoter elements and transcriptional control of the mouse acetylcholinesterase gene. J. Biol. Chem. 268, 3563–3572.

    PubMed  CAS  Google Scholar 

  • Li Y., Camp S., Rachinsky T.L., Getman D., and Taylor P. (1991) Gene structure of mammalian acetylcholinesterase. Alternative exons dictate tissue-specific expression. J. Biol. Chem. 266, 23083–23090.

    PubMed  CAS  Google Scholar 

  • Malatesta P., Hack M.A., Hartfuss E., Kettenmann H., Klinkert W., Kirchhoff F., and Gotz M. (2003) Neuronal or glial progeny: regional differences in radial glia fate. Neuron 37, 751–764.

    Article  PubMed  CAS  Google Scholar 

  • McEwen B.S. (1999) Stress and hippocampal plasticity. Annu Rev. Neurosci. 22, 105–122.

    Article  PubMed  CAS  Google Scholar 

  • Meshorer E., Erb C., Gazit R., Pavlovsky L., Kaufer D., Friedman A., et al. (2002) Alternative splicing and neuritic mRNA translocation under long-term neuronal hypersensitivity. Science 295, 508–512.

    Article  PubMed  CAS  Google Scholar 

  • Mezey G. and Robbins I. (2001) Usefulness and validity of post-traumatic stress disorder as a psychiatric category. Br. Med. J. 323, 561–563.

    Article  CAS  Google Scholar 

  • Nijholt I., Farchi N., Kye M., Sklan E.H., Shoham S., Verbeure B., et al. (2004) Stress-induced alternative splicing of acetylcholinesterase results in enhanced fear memory and long-term potentiation. Mol. Psychiatry 9, 174–183.

    Article  PubMed  CAS  Google Scholar 

  • Noctor S.C., Flint A.C., Weissman T.A., Dammerman, R.S., and Kriegstein A.R. (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409, 714–720.

    Article  PubMed  CAS  Google Scholar 

  • Pick M., Flores-Flores C., and Soreq H. (2004) From brain to blood: alternative splicing evidence for the cholinergic basis of mammalian stress responses. Ann. N. Y. Acad. Sci. 1018, 85–98.

    Article  PubMed  CAS  Google Scholar 

  • Rakic P. (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neurol. 145, 61–83.

    Article  PubMed  CAS  Google Scholar 

  • Ron D., Jiang Z., Yao L., Vagts A., Diamond I., and Gordon A. (1999) Coordinated movement of RACK1 with activated betaIIPKC. J. Biol. Chem. 274, 27039–27046.

    Article  PubMed  CAS  Google Scholar 

  • Sapolsky R.M. (2001) Cellular defenses against excitotoxic insults. J. Neurochem. 76, 1601–1611.

    Article  PubMed  CAS  Google Scholar 

  • Sapolsky R.M., Romero L.M., and Munck A.U. (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21, 55–89.

    Article  PubMed  CAS  Google Scholar 

  • Seidman S., Sternfeld M., Ben Aziz Aloya R., Timberg R., Kaufer Nachum D., and Soreq H. (1995) Synaptic and epidermal accumulations of human acetylcholinesterase are encoded by alternative 3′-terminal exons. Mol. Cell. Biol. 15, 2993–3002.

    PubMed  CAS  Google Scholar 

  • Shapira M., Tur-Kaspa I., Bosgraaf L., Livni N., Grant A.D., Grisaru D., et al. (2000) A transcription-activating polymorphism in the ACHE promoter associated with acute sensitivity to anti-acetylcholinesterases. Hum. Mol. Genet. 9, 1273–1281.

    Article  PubMed  CAS  Google Scholar 

  • Small D.H., Reed G., Whitefield B., and Nurcombe V. (1995) Cholinergic regulation of neurite outgrowth from isolated chick sympathetic neurons in cultures. J. Neurosci. 15, 144–151.

    PubMed  CAS  Google Scholar 

  • Smith T.F., Gaitatzes C., Saxena K., and Neer E.J. (1999) The WD repeat: a common architecture for diverse functions. Trends Biochem. Sci. 24, 181–185.

    Article  PubMed  CAS  Google Scholar 

  • Soreq H. and Seidman S. (2001) Acetylcholinesterase—new roles for an old actor. Nat. Rev. Neurosci. 2, 294–302.

    Article  PubMed  CAS  Google Scholar 

  • Sternfeld M., Ming G., Song H., Sela K., Timberg R., Poo M., and Soreq H. (1998) Acetylcholinesterase enhances neurite growth and synapse development through alternative contributions of its hydrolytic capacity, core protein, and variable C termini. J. Neurosci. 18, 1240–1249.

    PubMed  CAS  Google Scholar 

  • Takahashi T., Nowakowski R.S., and Caviness V.S. Jr. (1995) The cell cycle of the pseudostratified ventricular epithelium of the embryonic murine cerebral wall. J. Neurosci. 15, 6046–6057.

    PubMed  CAS  Google Scholar 

  • Tamamaki N., Nakamura K., Okamoto K., and Kaneko T. (2001) Radial glia is a progenitor of neocortical neurons in the devleoping cerebral cortex. Neurosci. Res. 41, 51–60.

    Article  PubMed  CAS  Google Scholar 

  • Weeber E.J., Atkins C.M., Selcher J.C., Varga A.W., Mirnikjoo B., Paylor R., et al. (2000) A role for the beta isoform of protein kinase C in fear conditioning. J. Neurosci. 20, 5906–5914.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermona Soreq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dori, A., Soreq, H. ARP, the cleavable C-terminal peptide of “readthrough” acetylcholinesterase, promotes neuronal development and plasticity. J Mol Neurosci 28, 247–255 (2006). https://doi.org/10.1385/JMN:28:3:247

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:28:3:247

Index Entries

Navigation