Skip to main content
Log in

Composition and function of G protein-coupled receptor signalsomes controlling mitogen-activated protein kinase activity

  • Review
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Seven membrane-spanning G protein-coupled receptors (GPCRs) function as ligand-activated guanine nucleotide exchange factors for heterotrimeric guanine nucleotide-binding (G) proteins that relay extracellular stimuli by activating intracellular effector enzymes or ion channels. Recent work, however, has shown that GPCRs also participate in numerous other protein-protein interactions that generate intracellular signals in conjunction with, or even independent of, G-protein activation. Nowhere has the importance of protein complex assembly in GPCR signaling been demonstrated more clearly than in the control of the spatial and temporal activity of the extracellular signal-regulated kinase (ERK1/2) mitogen-activated protein (MAP) kinase cascade. ERK1/2 activation by GPCRs often involves cross talk with classical receptor tyrosine kinases or focal adhesion complexes, which scaffold the assembly of a Ras activation complex. Even more surprising is the phenomenon of G protein-independent signaling using β-arrestins, proteins originally characterized for their role in homologous GPCR desensitization, as scaffolds for the assembly of a multiprotein signalsome directly upon the GPCR. Although both forms of signaling lead to MAP kinase activation, the pathways appear to be functionally, as well as mechanistically, distinct. Transactivated receptor tyrosine kinase mediate rapid and transient MAP kinase activation that favors nuclear translocation of the kinases and transcriptional activation. In contrast, β-arrestin-dependent signaling produces a slower and more sustained increase in MAP kinase activity that is often restricted to the cytosol. Together, these highly organized signaling complexes dictate the location, duration, and ultimate function of GPCR-stimulated MAP kinase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed I., Gesty-Palmer D., Drezner M. K., and Luttrell L. M. (2003) Transactivation of the epidermal growth factor receptor mediates parathyroid hormone and prostaglandin F2β-stimulated mitogen-activated protein kinase activation in cultured transgenic murine osteoblasts. Mol. Endocrinol. 17, 1607–1621.

    Article  PubMed  CAS  Google Scholar 

  • Ahn S., Nelson C. D., Garrison T. R., Miller W. E., and Lefkowitz R. J. (2003) Desensitization, internalization, and signaling functions of beta-arrestins demonstrated by RNA interference. Proc. Natl. Acad. Sci. U. S. A. 100, 1740–1744.

    Article  PubMed  CAS  Google Scholar 

  • Ahn S., Wei H., Garrison T. R., and Lefkowitz R. J. (2004a) Reciprocal regulation of angiotensin receptor-activated extracellular signal-regulated kinases by beta-arrestins 1 and 2. J. Biol. Chem. 279, 7807–7811.

    Article  PubMed  CAS  Google Scholar 

  • Ahn S., Shenoy S. K., Wei H., and Lefkowitz R.J. (2004b) Differential kinetic and spatial patterns of β-arrestin and G protein-mediated ERK activation by the angiotensin II receptor. J. Biol. Chem. 279, 35518–35525.

    Article  PubMed  CAS  Google Scholar 

  • Asakura M., Kitakaze M., Takashima S., Liao Y., Ishikura F., Yoshinaka T., et al. (2002) Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: metalloproteinase inhibitors as a new therapy. Nat. Med. 8, 35–40.

    Article  PubMed  CAS  Google Scholar 

  • Azzi M., Charest P. G., Angers S., Rousseau G., Kohout T., Bouvier M., and Pinyero G. (2003) Beta-arrestinmediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors. Proc. Natl. Acad. Sci. U. S. A. 100, 11406–11411.

    Article  PubMed  CAS  Google Scholar 

  • Bockaert J., Marin P., Dumuis A., and Fagni L. (2003) The ‘magic tail’ of G protein-coupled receptors: An anchorage for functional protein networks. FEBS Lett. 546, 65–72.

    Article  PubMed  CAS  Google Scholar 

  • Brady A. E. and Limbird L. E. (2002) G protein-coupled receptor interacting proteins: Emerging roles in localization and signal transduction. Cell. Signal. 14, 297–309.

    Article  PubMed  CAS  Google Scholar 

  • Daub H., Wallash C., Lankenau A., Herrlich A., and Ullrich A. (1997) Signal characteristics of G protein-transactivated EGF receptor.EMBO J. 16 , 7032–7044.

    Article  PubMed  CAS  Google Scholar 

  • Daub H., Weiss F. U., Wallasch C., and Ullrich A. (1996) Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 379, 557–560.

    Article  PubMed  CAS  Google Scholar 

  • DeFea K. A., Vaugh Z. D., O’Bryan E. M., Nishijima D., Dery O., and Bunnett N. W. (2000a) The proliferative and antiapoptotic effects of substance P are facilitated by formation of a β-arrestin-dependent scaffolding complex. Proc. Natl. Acad. Sci. U. S. A. 97, 11086–11091.

    Article  PubMed  CAS  Google Scholar 

  • DeFea K. A., Zalevsky J., Thoma M. S., Dery O., Mullins R. D., and Bunnett N. W. (2000b) β-Arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J. Cell Biol. 148, 1267–1281.

    Article  PubMed  CAS  Google Scholar 

  • Della Rocca G. J., Maudsley S., Daaka Y., Lefkowitz R. J., and Luttrell L. M. (1999) Pleiotropic coupling of G-protein-coupled receptors to the MAP kinase cascade: role of focal adhesions and receptor tyrosine kinases. J. Biol. Chem. 274, 13978–13984.

    Article  PubMed  CAS  Google Scholar 

  • Dhanasekaran N., Heasley L. E., and Johnson G. L. (1995) G protein-coupled receptor systems involved in cell growth and oncogenesis. Endocr. Rev. 16, 259–270.

    Article  PubMed  CAS  Google Scholar 

  • Dikic I., Tokiwa G., Lev S., Courtneidge S. A., and Schlessinger J. (1996) A role for PYK2 and Src in linking G-protein-coupled receptors with MAP kinase activation. Nature 383, 547–550.

    Article  PubMed  CAS  Google Scholar 

  • Eguchi S., Numaguchi K., Iwasaki H., Matsumoto T., Yamakawa T., Utsunomiya H., et al. (1998) Calcium-dependent epidermal growth factor receptor transactivation mediates the angiotensin II-induced mitogen-activated protein kinase activation in vascular smooth muscle cells. J. Biol. Chem. 273, 8890–8896.

    Article  PubMed  CAS  Google Scholar 

  • Elorza A., Penela P., Sarnago S., and Mayor F. Jr. (2003) MAPK-dependent degradation of G protein-coupled receptor kinase 2. J. Biol. Chem. 278, 29164–29173.

    Article  PubMed  CAS  Google Scholar 

  • Fan H. and Derynck R. (1999) Ectodomain shedding of TGF-α and other transmembrane proteins is induced by receptor tyrosine kinase activation and MAP kinase signaling cascades. EMBO J. 18, 6962–6972.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson S. S. (2001) Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol. Rev. 53, 1–24.

    PubMed  CAS  Google Scholar 

  • Fong A. M., Premont R. T., Richardson R. M., Yu Y. R., Lefkowitz R. J., and Patel D. D. (2002) Defective lymphocyte chemotaxis in beta-arrestin 2- and GRK6-deficientmice. Proc. Natl. Acad. Sci. U. S. A. 99, 7478–7483.

    Article  PubMed  CAS  Google Scholar 

  • Fredriksson R., Lagerstrom M. C., Lundin L. G., and Schioth H. B. (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256–1272.

    Article  PubMed  CAS  Google Scholar 

  • Freedman N. J. and Lefkowitz R. J. (1996) Desensitization of G protein-coupled receptors. Recent Prog. Horm. Res. 51, 319–351.

    PubMed  CAS  Google Scholar 

  • Ge L., Ly Y., Hollenberg M., and DeFea K. (2003) A beta-arrestin-dependent scaffold is associated with prolonged MAPK activation in pseudopodia during protease-activated receptor-2-induced chemotaxis. J. Biol. Chem. 278, 34418–34426.

    Article  PubMed  CAS  Google Scholar 

  • Goodman O. B. Jr., Krupnick J. G., Santini F., Gurevich V. V., Penn R. B., Gagnon A. W., et al. (1996) Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature 383, 447–450.

    Article  PubMed  CAS  Google Scholar 

  • Gutkind J. S. (1998) The pathways connecting G protein-coupled receptors to the nucleus through divergent mitogen-activated protein kinase cascades. J. Biol. Chem. 273, 1839–1842.

    Article  PubMed  CAS  Google Scholar 

  • Hall R. A. and Lefkowitz R. J. (2002) Regulation of G protein-coupled receptor signaling by scaffold proteins. Circ. Res. 91, 672–680.

    Article  PubMed  CAS  Google Scholar 

  • Hawes B. E., Luttrell L. M., van Biesen T., and Lefkowitz R. J. (1996) Phosphatidylinositol 3-kinase is an early intermediate in the Gβγ-mediated mitogen activated protein kinase signaling pathway. J. Biol. Chem. 271, 12133–12136.

    Article  PubMed  CAS  Google Scholar 

  • Herrlich A., Daub H., Knebel A., Herrlich P., Ullrich A., Schultz G., and Gudermann T. (1998) Ligand-independent activation of platelet-derived growth factor receptor is a necessary intermediate in lysophosphatidic acid-stimulated mitogenic activity in L cells. Proc. Natl. Acad. Sci. U. S. A. 95, 8985–8990.

    Article  PubMed  CAS  Google Scholar 

  • Kohout T. A., Nicholas S. L., Perry S. J., Reinhart G., Junger S., and Struthers R. S. (2004) Differential desensitization, receptor phosphorylation, β-arrestin recruit ment, and ERK1/2 activation by the two endogenous ligands for the CC chemokine receptor 7. J. Biol. Chem. 279, 23214–23222.

    Article  PubMed  CAS  Google Scholar 

  • Laporte S. A., Oakley R. H., Zhang J., Holt J. A., Ferguson S. S., Caron M. G., and Barak L. S. (1999) The beta2-adrenergic receptor/beta-arrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proc. Natl. Acad. Sci. U. S. A. 96, 3712–3717.

    Article  PubMed  CAS  Google Scholar 

  • Lev S., Moreno H., Martinez R., Canoll P., Peles E., Musacchio J. M., et al. (1995) Protein tyrosine kinase PYK2 involved in Ca(2+)-induced regulation of ion channel and MAP kinase functions. Nature 376, 737–745.

    Article  PubMed  CAS  Google Scholar 

  • Linseman D. A., Benjamin C. W., and Jones D. A. (1995) Convergence of angiotensin II and platelet-derived growth factor receptor signaling cascades in vascular smooth muscle cells. J. Biol. Chem. 270, 12563–12568.

    Article  PubMed  CAS  Google Scholar 

  • Luttrell L. M. and Lefkowitz R. J. (2002) The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J. Cell. Sci. 115, 455–465.

    PubMed  CAS  Google Scholar 

  • Luttrell L. M., Della Rocca G. J., van Biesen T., Luttrell D. K., and Lefkowitz R. J. (1997) Gβγ subunits mediate Src-dependent phosphorylation of the epidermal growth factor receptor. J. Biol. Chem. 272, 4637–4644.

    Article  PubMed  CAS  Google Scholar 

  • Luttrell L. M., Ferguson S. S. G., Daaka Y., Miller W. E., Maudsley S., Della Rocca G. J., et al. (1999) β-Arrestin-dependent formation of β2 adrenergic receptor/Src protein kinase complexes. Science 283, 655–661.

    Article  PubMed  CAS  Google Scholar 

  • Luttrell L. M., Roudabush F. L., and Choy E. W., Miller W. E., Field M. E., Pierce K. L., and Lefkowitz R. J. (2001) Activation and targeting of extracellular signal-regulated kinases by β-arrestin scaffolds. Proc. Natl. Acad. Sci. U. S. A. 98, 2449–2454.

    Article  PubMed  CAS  Google Scholar 

  • Maudsley S., Pierce K. L., Zamah A. M., Miller W. E., Ahn S., Daaka Y., et al. (2000) The {ie262-1}adrenergic receptor mediates extracellular signal-regulated kinase activation via assembly of a multi-receptor complex with the epidermal growth factor receptor. J. Biol. Chem. 275, 9572–9580.

    Article  PubMed  CAS  Google Scholar 

  • McDonald P. H., Chow C.-W., Miller W. E., LaPorte S. A., Field M. E., Lin F.-T., et al. (2000) β-Arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 290, 1574–1577.

    Article  PubMed  CAS  Google Scholar 

  • Miranti C. K. and Brugge J. S. (2002) Sensing the environment: a historical perspective on integrin signal transduction. Nat. Cell. Biol. 4, E83–90.

    Article  PubMed  CAS  Google Scholar 

  • Oakley R. H., Laporte S. A., Holt J. A., Caron M. G., and Barak L. S. (2000) Differential affinities of visual arrestin, β-arrestin1, and β-arrestin2 for G protein-coupled receptors delineate two major classes of receptors. J. Biol. Chem. 275, 17201–17210.

    Article  PubMed  CAS  Google Scholar 

  • Oakley R. H., Laporte S. A., Holt J. A., Barak L. S., and Caron M. G. (2001) Molecular determinants underlying the formation of stable intracellular G protein-coupled receptor-β-arrestin complexes after receptor endocytosis. J. Biol. Chem. 276, 19452–19460.

    Article  PubMed  CAS  Google Scholar 

  • Parsons J. T. (2003) Focal adhesion kinase: the first ten years. J. Cell Sci. 116, 1409–1416.

    Article  PubMed  CAS  Google Scholar 

  • Pierce K. L., Luttrell L. M., and Lefkowitz R. J. (2001a) New mechanisms in heptahelical receptor signaling to mitogen activated protein kinase cascades. Oncogene 20, 1532–1539.

    Article  PubMed  CAS  Google Scholar 

  • Pierce K. L., Tohgo A., Ahn S., Field M. E., Luttrell L. M., and Lefkowitz R. J. (2001b) Epidermal growth factor receptor dependent ERK activation by G protein-coupled receptors: a co-culture system for identifying intermediates upstream and downstream of HB-EGF shedding. J. Biol. Chem. 276, 23155–23165.

    Article  PubMed  CAS  Google Scholar 

  • Prenzel N., Zwick E., Daub H., Leserer M., Abraham R., Wallasch C., and Ullrich A. (1999) EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402, 884–888.

    PubMed  CAS  Google Scholar 

  • Scott M. G., Le Rouzic E., Perianin A., Pierotti V., Enslen H., Benichou S., et al. (2002) Differential nucleocytoplasmic shuttling of β-arrestins. Characterization of a leucine-rich nuclear export sequence in β-arrestin2. J. Biol. Chem. 277, 37693–37701.

    Article  PubMed  CAS  Google Scholar 

  • Shah B. H., Yesilkaya A., Olivares-Reyes J. A., Chen H. D., Hunyady L., and Catt K. J. (2004) Differential pathways of angiotensin II-induced extracellularly regulated kinase 1/2 phosphorylation in specific cell types: role of heparin-binding epidermal growth factor. Mol. Endocrinol. 18, 2035–2048.

    Article  PubMed  CAS  Google Scholar 

  • Shenoy S. K. and Lefkowitz R. J. (2003). Multifaceted roles of beta-arrestins in the regulation of seven-membrane-spanning receptor trafficking and signalling. Biochem. J. 375, 503–515.

    Article  PubMed  CAS  Google Scholar 

  • Tohgo A., Pierce K. L., Choy E. W., Lefkowitz R. J., and Luttrell L. M. (2002) β-Arrestin scaffolding of the ERK cascade enhances cytosolic ERK activity but inhibits ERK-mediated transcription following angiotensin AT1a receptor stimulation. J. Biol. Chem. 277, 9429–9436.

    Article  PubMed  CAS  Google Scholar 

  • Tohgo A., Choy E. W., Gesty-Palmer D., Pierce K. L., Laporte S., Oakley R. H., et al. (2003) The stability of the G protein-coupled receptor-beta-arrestin interaction determines the mechanism and functional consequence of ERK activation. J. Biol. Chem. 278, 6258–6267.

    Article  PubMed  CAS  Google Scholar 

  • van Biesen T., Hawes B. E., Luttrell D. K., Krueger K. M., Touhara K., Porfiri E., et al. (1995) Receptor-tyrosine-kinase-and Gβγ-mediated MAP kinase activation by a common signalling pathway. Nature 376, 781–784.

    Article  PubMed  Google Scholar 

  • van Biesen T., Luttrell L. M., Hawes B. E., and Lefkowitz R. J. (1996) Mitogenic signaling via G protein-coupled receptors. Endocr. Rev. 17, 698–714.

    Article  PubMed  Google Scholar 

  • Wang P., Wu Y., Ge X., Ma L., and Pei G. (2003) Subcellular localization of beta-arrestins is determined by their intact N domain and the nuclear export signal at the C terminus. J. Biol. Chem. 278, 11648–11653.

    Article  PubMed  CAS  Google Scholar 

  • Wei H., Ahn S., Shenoy S. K., Karnik S. S., Hunyady L., Luttrell L. M., and Lefkowitz R. J. (2003) Independent beta-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proc. Natl. Acad. Sci. U. S. A. 100, 10782–10787.

    Article  PubMed  CAS  Google Scholar 

  • Yart A., Roche S., Wetzker R., Laffargue M., Tonks N., Mayeux P., Chap H., and Raynal P. (2002) A function for phosphoinositide 3-kinase beta lipid products in coupling beta gamma to Ras activation in response to lysophosphatidic acid. J. Biol. Chem. 277, 21167–21178.

    Article  PubMed  CAS  Google Scholar 

  • Zhang J., Barak L. S., Anborgh P. H., Laporte S. A., Caron M. G., and Ferguson S. S. (1999) Cellular trafficking of G protein-coupled receptor/β-arrestin endocytic complexes. J. Biol. Chem. 274, 10999–11006.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis M. Luttrell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luttrell, L.M. Composition and function of G protein-coupled receptor signalsomes controlling mitogen-activated protein kinase activity. J Mol Neurosci 26, 253–264 (2005). https://doi.org/10.1385/JMN:26:2-3:253

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:26:2-3:253

Index Entries

Navigation