Skip to main content
Log in

CFTR and chaperones

Processing and degradation

  • Review Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The autosomal recessive disease cystic fibrosis (CF) is caused by mutations in the gene coding for the CF transmembrane conductance regulator (CFTR) protein, a cAMP-activated chloride channel expressed at the apical membrane of epithelial cells. Although about 1000 different mutations have been identified, most CF patients carry the F508del mutation in at least one CFTR allele. F508del-CFTR is synthesized but is substantially retained as a core-glycosylated intermediate in the endoplasmic reticulum (ER), probably because of misfolding. The mutant protein is recognized by molecular chaperones involved in cellular quality control and rapidly targeted for proteasomal degradation. Although maturation of wild-type CFTR (wt-CFTR) is also inefficient at varying levels, depending on the cell type, there is increasing evidence that the two proteins acquire at least partially distinct conformations. However, the structural cues responsible for the conformational differences and the cellular mechanisms determining the endpoint for each conformer remain largely unclear. Some knowledge is emerging on CFTR membrane folding and on the role of this process of molecular chaperones, such as Hsp70/Hdj-1 and calnexin. The key players in the final decision on whether the protein will enter the secretory pathway or be degraded, however, remain unidentified. Here we discuss existing data on the interaction of molecular chaperones and CFTR, as well as their putative role on the degradation and processing of this polytopic membrane protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bannykh S. I., Bannykh G. I., Fish K. N., Moyer B. D., Riordan J. R., and Balch W.E. (2000) Traffic pattern of cystic fibrosis transmembrane regulator through the early exocytic pathway. Traffic 1, 852–870.

    Article  PubMed  CAS  Google Scholar 

  • Bebok Z., Mazzochi C., King S. A, Hong J. S., and Sorscher E. J. (1998) The mechanism underlying cystic fibrosis transmembrane conductance regulator transport from the endoplasmic reticulum to the proteasome includes Sec61beta and a cytosolic, deglycosylated intermediary. J. Biol. Chem. 273, 29873–29878.

    Article  PubMed  CAS  Google Scholar 

  • Bradbury N. A., Jilling T., Berta G., Sorcher E. J., Bridges R. J., and Kirk K. L. (1992) Regulation of plasma membrane recycling by CFTR. Science 256, 530–532.

    Article  PubMed  CAS  Google Scholar 

  • Cabral C. M., Liu Y., and Sifers R. N. (2001) Dissecting glycoprotein quality control in the secretory pathway. Trends Biochem. Sci. 26, 619–624.

    Article  PubMed  CAS  Google Scholar 

  • Collins F. S. (1992) Cystic fibrosis: molecular biology and therapeutic implications. Science 256, 774–779.

    Article  PubMed  CAS  Google Scholar 

  • Dalemans W., Barbry P., Champigny G., Jallat S., Dott K., Dreyer D., et al. (1991) Altered chloride ion channel kinetics associated with the delta F508 cystic fibrosis mutation. Nature 354, 526–528.

    Article  PubMed  CAS  Google Scholar 

  • Denning G. M., Ostedgaard L. S., and Welsh M. J. (1992) Abnormal localization of cystic fibrosis transmembrane conductance regulator in primary cultures of cystic fibrosis airway epithelia. J. Cell. Biol. 118, 551–559.

    Article  PubMed  CAS  Google Scholar 

  • Ellgaard L. and Helenius A. (2001) ER quality control: towards an understanding at the molecular level. Curr. Opin. Cell. Biol. 13, 431–437.

    Article  PubMed  CAS  Google Scholar 

  • Ellgaard L., Molinari M., and Helenius A. (1999) Setting the standards: quality control in the secretory pathway. Science 286, 1882–1888.

    Article  PubMed  CAS  Google Scholar 

  • Farinha C. M. (2002) “Processing and intracellular trafficking of wild-type and mutant CFTR,” Ph.D. thesis, Faculty of Sciences, University of Lisboa, Lisboa, Portugal.

    Google Scholar 

  • Farinha C. M., Nogueira P., Mendes F., Penque D., and Amaral M. D. (2002) The human DnaJ homologue (Hdj)-1/heat-shock protein (Hsp) 40 co-chaperone is required for the in vivo stabilization of the cystic fibrosis transmembrane conductance regulator by Hsp70. Biochem. J. 366, 797–806.

    PubMed  CAS  Google Scholar 

  • Fu L. and Sztul E. (2003) Traffic-independent function of the Sar1p/COPII machinery in proteasomal sorting of the cystic fibrosis transmembrane conductance regulator. J. Cell. Biol. 160, 157–163.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert A., Jadot M., Leontieva E., Wattiaux-De Coninck S., and Wattiaux R. (1998) Delta F508 CFTR localizes in the endoplasmic reticulum-Golgi intermediate compartment in cystic fibrosis cells. Exp. Cell. Res. 242, 144–152.

    Article  PubMed  CAS  Google Scholar 

  • Hosokawa N., Wada I., Hasegawa K., Yorihuzi T., Tremblay L. O., Herscovics A., and Nagata K. (2001) A novel ER alpha-mannosidase-like protein accelerates ER-associated degradation. EMBO Rep. 2, 415–422.

    PubMed  CAS  Google Scholar 

  • Jakob C. A., Bodmer D., Spirig U., Battig P., Marcil A., Dignard D., et al. (2001) Htm1p, a mannosidase-like protein, is involved in glycoprotein degradation in yeast. EMBO Rep. 2, 423–430.

    PubMed  CAS  Google Scholar 

  • Jakob C. A., Burda P., Roth J., and Aebi M. (1998) Degradation of misfolded endoplasmic reticulum glycoproteins in Saccharomyces cerevisae is determined by a specific oligosaccharide structure. J. Cell Biol. 142, 1223–1233.

    Article  PubMed  CAS  Google Scholar 

  • Jensen T. J., Loo M. A., Pind S., Williams D. B., Goldberg A. L., and Riordan J. R. (1995) Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83, 129–135.

    Article  PubMed  CAS  Google Scholar 

  • Johnston J. A., Ward C. L., and Kopito R. R. (1998) Aggresomes: a cellular response to misfolded proteins. J. Cell Biol. 143, 1883–1898.

    Article  PubMed  CAS  Google Scholar 

  • Kälin N., Claass A., Sommer M., Puchelle E., and Tümmler B. (1999) DeltaF508 CFTR protein expression in tissues from patients with cystic fibrosis. J. Clin. Invest. 103, 1379–1389.

    PubMed  Google Scholar 

  • Kamhi-Nesher S., Shenkman M., Tolchinsky S., Fromm S. V., Ehrlich R., and Lederkremer G. Z. (2001) A novel quality control compartment derived from the endoplasmic reticulum. Mol. Biol. Cell. 12, 1711–1723.

    PubMed  CAS  Google Scholar 

  • Klein I., Sarkadi B., and Varadi A. (1999) An inventory of the human ABC proteins. Biochim. Biophys. Acta 1461, 237–262 (see also www.humanabc.org).

    Article  PubMed  CAS  Google Scholar 

  • Loo M. A., Jensen T. J., Cui L., Hou Y., Chang X. B., and Riordan, J. R. (1998) Perturbation of Hsp90 interaction with nascent CFTR prevents its maturation and accelerates its degradation by the proteasome. EMBO J. 17, 6879–6887.

    Article  PubMed  CAS  Google Scholar 

  • Lu Y., Xiong X., Helm A., Kimani K., Bragin A., and Skach W. R. (1998) Co- and posttranslational translocation mechanisms direct cystic fibrosis transmembrane conductance regulator N terminus transmembrane assembly. J. Biol. Chem. 273, 568–576.

    Article  PubMed  CAS  Google Scholar 

  • Lukacs G. L., Chang X. B., Bear C., Kartner N., Mohamed A., Riordan J. R., and Grinstein S. (1993) The delta F508 mutation decreases the stability of cystic fibrosis transmembrane conductance regulator in the plasma membrane. Determination of functional half-lives on transfected cells. J. Biol. Chem. 268, 21592–21598.

    PubMed  CAS  Google Scholar 

  • Meacham G. C., Lu Z., King S., Sorscher E., Tousson A., and Cyr, D. M. (1999) The Hdj-2/Hsc70 chaperone pair facilitates early steps in CFTR biogenesis. EMBO J. 18, 1492–1505.

    Article  PubMed  CAS  Google Scholar 

  • Meacham G. C., Patterson C., Zhang W., Younger J. M., and Cyr D. M. (2001) The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat. Cell Biol. 3, 100–105.

    Article  PubMed  CAS  Google Scholar 

  • Nehls S., Snapp E. L., Cole N. B., Zaal K. J. M., Kenworthy A. K., Roberts T. H., et al. (2000) Dynamics and retention of misfolded proteins in native ER membranes. Nat. Cell Biol. 2, 288–295.

    Article  PubMed  CAS  Google Scholar 

  • Parodi A. J. (2000) Protein glucosylation and its role in protein folding. Annu. Rev. Biochem. 69, 69–93.

    Article  PubMed  CAS  Google Scholar 

  • Pasyk E. A. and Foskett J. K. (1995) Mutant (delta F508) cystic fibrosis transmembrane conductance regulator Cl- channel is functional when retained in endoplasmic reticulum of mammalian cells. J. Biol. Chem. 270, 12347–12350.

    Article  PubMed  CAS  Google Scholar 

  • Penque D., Mendes F., Beck S., Farinha C., Pacheco P., Nogeuira P., et al. (2000) Cystic fibrosis F508del patients have apically localized CFTR in a reduced number of airway cells. Lab. Invest. 80, 857–868.

    PubMed  CAS  Google Scholar 

  • Pind S., Riordan J. R., and Williams D. B. (1994) Participation of the endoplasmic reticulum chaperone calnexin (p88, IP90) in the biogenesis of the cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 269, 12784–12788.

    PubMed  CAS  Google Scholar 

  • Ramalho A. S., Beck S., Meyer M., Penque D., Cutting G., and Amaral M. D. (2002) Five percent of normal CFTR mRNA ameliorates the severity of pulmonary disease in cystic fibrosis. Am. J. Respir. Cell. Mol. Biol. 27, 619–627.

    PubMed  CAS  Google Scholar 

  • Riordan, J. R. (1999) Cystic fibrosis as a diseae of misprocessing of the cystic fibrosis transmembrane conductance regulator glycoprotein. Am. J. Hum. Genet. 64, 1499–1504.

    Article  PubMed  CAS  Google Scholar 

  • Riordan J. R. (1993) The cystic fibrosis transmembrane conductance regulator. Annu. Rev. Physiol. 55, 609–630.

    Article  PubMed  CAS  Google Scholar 

  • Riordan J. R., Rommens J. M., Kerem B., Alon N., Rozmahel R., Grzelczak Z., et al. (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066–1073.

    Article  PubMed  CAS  Google Scholar 

  • Sharma M., Benharouga M., Hu W., and Lukacs G. L. (2001) Conformational and temperature-sensitive stability defects of the delta F508 cystic fibrosis transmembrane conductance regulator in post-endoplasmic reticulum compartments. J. Biol. Chem. 276, 8942–8950.

    Article  PubMed  CAS  Google Scholar 

  • Sheppard D. N. and Welsh M. J. (1999) Structure and function of the CFTR chloride channel. Physiol. Rev. 79, S23-S45.

    PubMed  CAS  Google Scholar 

  • Skach W. R. (2000) Defects in processing and trafficking of the cystic fibrosis transmembrane conductance regulator. Kidney Int. 57, 825–831.

    Article  PubMed  CAS  Google Scholar 

  • Vashist S., Kim W., Belden W. J., Spear E. D., Barlowe C., and Ng D. T. W. (2001) Distinct retrieval and retention mechanisms are required for the quality control of endoplasmic reticulum protein folding. J. Cell Biol. 155, 355–367.

    Article  PubMed  CAS  Google Scholar 

  • Wang F., Zeltwanger S., Hu S., and Hwang T. C. (2000) Deletion of phenylalanine 508 causes attenuated phosphorylation-dependent activation of CFTR chloride channels J. Physiol. 524, 637–648.

    Article  PubMed  CAS  Google Scholar 

  • Ward C. L., Omura S., and Kopito R. R. (1995) Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 83, 121–127.

    Article  PubMed  CAS  Google Scholar 

  • Wei X., Eisman R., Xu J., Harsch A. D., Mulberg A. E., Bevins C. L., et al. (1996) Turnover of the cystic fibrosis transmembrane conductance regulator (CFTR): slow degradation of wild-type and delta F508 CFTR in surface membrane preparations of immortalized airway epithelial cells. J. Cell. Physiol. 168, 373–384.

    Article  PubMed  CAS  Google Scholar 

  • Yang Y., Janich S., Cohn J. A., and Wilson J. M. (1993) The common variant of cystic fibrosis transmembrane conductance regulator is recognized by hsp70 and degraded in a pre-Golgi nonlysosomal compartment. Proc. Natl. Acad. Sci. USA 90, 9480–9484.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarida D. Amaral.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amaral, M.D. CFTR and chaperones. J Mol Neurosci 23, 41–48 (2004). https://doi.org/10.1385/JMN:23:1-2:041

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:23:1-2:041

Index Entries

Navigation