Skip to main content
Log in

The innate immune facet of brain

Human neurons express TLR-3 and sense viral dsRNA

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

An Erratum to this article was published on 07 September 2007

Abstract

Inflammation is an important factor in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease or multiple sclerosis, and during microbial infections of the nervous system. Glial cells were thought to be the main contributor for cytokine and chemokine production and Toll-like receptor (TLR) expression in the brain. Here, we report that human neurons express TLR-3, a major receptor in virus-mediated innate immune response. We established that these cells can mount a strong inflammatory response characterized by the expression of inflammatory cytokines (TNF-α, IL-6), chemokines (CCL-5 and CXCL-10), and antiviral molecules (2′5′OAS and IFN-β) after treatment with dsRNA—a by-product of viral infection and ligand of TLR-3. This work firmly establishes that human neurons, in absence of glia, have the intrinsic machinery to trigger robust inflammatory, chemoattractive, and antiviral responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bachoo R. M., Kim R. S., Ligon K. L., Maher E. A., Brennan C., Billings N., et al. (2004) Molecular diversity of astrocytes with implications for neurological disorders. Proc. Natl. Acad. Sci. U. S. A. 101, 8384–8389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell J. K., Botos I., Hall P. R., Askins J., Shiloach J., Segal D. M., and Davies D. R. (2005) The molecular structure of the Toll-like receptor 3 ligand-binding domain. Proc. Natl. Acad. Sci. U. S. A. 102, 10,976–10,980.

    Article  CAS  Google Scholar 

  • Boehme K. W. and Compton T. (2004) Innate sensing of viruses by toll-like receptors. J. Virol. 78, 7867–7873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boivin G., Coulombe Z., and Rivest S. (2002) Intranasal herpes simplex virus type 2 inoculation causes a profound thymidine kinase dependent cerebral inflammatory response in the mouse hindbrain. Eur. J. Neurosci. 16, 29–43.

    Article  PubMed  Google Scholar 

  • Bottcher T., von Mering M., Ebert S., Meyding-Lamade U., Kuhnt U., Gerber J., and Nau R. (2003) Differential regulation of Toll-like receptor mRNAs in experimental murine central nervous system infections. Neurosci. Lett. 344, 17–20.

    Article  CAS  PubMed  Google Scholar 

  • Boulanger L. M. and Shatz C. J. (2004) Immune signalling inneural development, synaptic plasticity and disease. Nat. Rev. Neurosci. 5, 521–531.

    Article  CAS  PubMed  Google Scholar 

  • Bsibsi M., Ravid R., Gveric D., and van Noort J. M. (2002) Broad expression of Toll-like receptors in the human central nervous system. J. Neuropathol. Exp. Neurol. 61, 1013–1021.

    Article  CAS  PubMed  Google Scholar 

  • Campos M. A., Almeida I. C., Takeuchi O., Akira S., Valente E. P., Procopio D. O., et al. (2001) Activation of Toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite. J. Immunol. 167, 416–423.

    Article  CAS  PubMed  Google Scholar 

  • Cario E. and Podolsky D. K. (2000) Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect. Immunol. 68, 7010–7017.

    Article  CAS  Google Scholar 

  • Cheung W. M., Fu W. Y., Hui W. S., and Ip N. Y. (1999) Production of human CNS neurons from embryonal carcinoma cells using a cell aggregation method. Biotechniques 26, 946–954.

    CAS  PubMed  Google Scholar 

  • Corriveau R. A., Huh G. S., and Shatz C. J. (1998) Regulation of class I MHC gene expression in the developing and mature CNS by neural activity. Neuron 21, 505–520.

    Article  CAS  PubMed  Google Scholar 

  • Coughlan C. M., McManus C. M., Sharron M., Gao Z., Murphy D., Jaffer S., et al. (2000) Expression of multiple functional chemokine receptors and monocyte chemoattractant protein-1 in human neurons. Neuroscience 97, 591–600.

    Article  CAS  PubMed  Google Scholar 

  • Cowan E. P., Alexander R. K., Daniel S., Kashanchi F., and Brady J. N. (1997) Induction of tumor necrosis factor alpha in human neuronal cells by extracellular human T-cell lymphotropic virus type 1 Tax. J. Virol. 71, 6982–6989.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farina C., Krumbholz M., Giese T., Hartmann G., Aloisi F., and Meinl E. (2005) Preferential expression and function of Toll-like receptor 3 in human astrocytes. J. Neuroimmunol. 159, 12–19.

    Article  CAS  PubMed  Google Scholar 

  • Finberg R. W. and Kurt-Jones E. A. (2004) Viruses and Toll-like receptors. Microbes Infect. 6, 1356–1360.

    Article  CAS  PubMed  Google Scholar 

  • Guillot L., Le Goffic R., Bloch S., Escriou N., Akira S., Chignard M., and Si-Tahar M. (2005) Involvement of toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus. J. Biol. Chem. 280, 5571–5580.

    Article  CAS  PubMed  Google Scholar 

  • Guo C. J., Douglas S. D., Lai J. P., Pleasure D. E., Li Y., Williams M., et al. (2003) Interleukin-1beta stimulates macrophage inflammatory protein-1alpha and-1beta expression in human neuronal cells (NT2-N). J. Neurochem. 84, 997–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huh G. S., Boulanger L. M., Du H., Riquelme P. A., Brotz T. M., and Shatz C. J. (2000) Functional requirement for class I MHC in CNS development and plasticity. Science 290, 2155–2159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irwin D. J., Wunner W. H., Ertl H. C., and Jackson A. C. (1999) Basis of rabies virus neurovirulence in mice: expression of major histocompatibility complex class I and class II mRNAs. J. Neurovirol. 5, 485–494.

    Article  CAS  PubMed  Google Scholar 

  • Jack C. S., Arbour N., Manusow J., Montgrain V., Blain M., McCrea E., et al. (2005) TLR signaling tailors innate immune responses in human microglia and astrocytes. J. Immunol. 175, 4320–4330.

    Article  CAS  PubMed  Google Scholar 

  • Jackson A. C., Rossiter J. P., and Lafon M. (2006) Expression of Toll-like receptor 3 in the human cerebellar cortex in rabes, herpes simplex encephalitis, and other neurological diseases. Pediatr. Infect. Dis. J. 25, 570.

    Article  PubMed  Google Scholar 

  • Jacobs B. L. and Langland J. O. (1996) When two strands are better than one: the mediators and modulators of the cellular responses to double-stranded RNA. Virology 219, 339–349.

    Article  CAS  PubMed  Google Scholar 

  • Janabi N., Peudenier S., Heron B., Ng K. H., and Tardieu M. (1995) Establishment of human microglial cell lines after transfection of primary cultures of embryonic microglial cells with the SV40 large T antigen. Neurosci. Lett. 195, 105–108.

    Article  CAS  PubMed  Google Scholar 

  • Kang D. C., Gopalkrishnan R. V., Wu Q., Jankowsky E., Pyle A. M., and Fisher P. B. (2002) mda-5: an interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties. Proc. Natl. Acad. Sci. U. S. A. 99, 637–642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato H., Sato S., Yoneyama M., Yamamoto M., Uematsu S., Matsui K., et al. (2005) Cell type-specific involvement of RIG-I in antiviral response. Immunity 23, 19–28.

    Article  CAS  PubMed  Google Scholar 

  • Kleppner S. R., Robinson K. A., Trojanowski J. Q., and Lee V. M. (1995) Transplanted human neurons derived from a teratocarcinoma cell line (NTera-2) mature, integrate, and survive for over 1 year in the nude mouse brain. J. Comp. Neurol. 357, 618–632.

    Article  CAS  PubMed  Google Scholar 

  • Koedel U., Angele B., Rupprecht T., Wagner H., Roggenkamp A., Pfister H. W., and Kirschning C. J. (2003) Toll-like receptor 2 participates in mediation of immune response in experimental pneumococcal meningitis. J. Immunol. 170, 438–444.

    Article  CAS  PubMed  Google Scholar 

  • Lafon M., Prehaud C., Megret F., Lafage M., Mouillot G., Roa M., Moreau P., et al. (2005) Modulation of HLA-G expression in human neural cells after neurotropic viral infections. J. Virol. 79, 15,226–15,237.

    Article  CAS  Google Scholar 

  • Li Y., Douglas S. D., Pleasure D. E., Lai J., Guo C., Bannerman P., et al. (2003) Human neuronal cells (NT2-N) express functional substance P and neurokinin-1 receptor coupled to MIP-1 beta expression. J. Neurosci. Res. 71, 559–566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loconto J., Papes F., Chang E., Stowers L., Jones E. P., Takada T., et al. (2003) Functional expression of murine V2R pheromone receptors involves selective association with the M10 and M1 families of MHC class Ib molecules. Cell 112, 607–618.

    Article  CAS  PubMed  Google Scholar 

  • Maier S., Geraghty D. E., and Weiss E. H. (1999) Expression and regulation of HLA-G in human glioma cell lines. Transplant. Proc. 31, 1849–1853.

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M., Funami K., Tanabe M., Oshiumi H., Shingai M., Seto Y., et al. (2003) Subcellular localization of Toll-like receptor 3 in human dendritic cells. J. Immunol. 171, 3154–3162.

    Article  CAS  PubMed  Google Scholar 

  • McKimmie C. S., Johnson N., Fooks A. R., and Fazakerley J. K. (2005) Viruses selectively upregulate Toll-like receptors in the central nervous system. Biochem. Biophys. Res. Commun. 336(3), 925–933.

    Article  CAS  PubMed  Google Scholar 

  • Medana I. M., Gallimore A., Oxenius A., Martinic M. M., Wekerle H., and Neumann H. (2000) MHC class I-restricted killing of neurons by virus-specific CD8+ T lymphocytes is effected through the Fas/FasL, but not the perforin pathway. Eur. J. Immunol. 30, 3623–3633.

    Article  CAS  PubMed  Google Scholar 

  • Miettinen M., Sareneva T., Julkunen I., and Matikainen S. (2001) IFNs activate toll-like receptor gene expression in viral infections. Genes Immun. 2, 349–355.

    Article  CAS  PubMed  Google Scholar 

  • Muzio M., Bosisio D., Polentarutti N., D'Amico G., Stoppacciaro A., Mancinelli R., et al. (2000) Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J. Immunol. 164, 5998–6004.

    Article  CAS  PubMed  Google Scholar 

  • Neumann H., Medana I. M., Bauer J., and Lassmann H. (2002) Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases. Trends Neurosci. 25, 313–319.

    Article  CAS  PubMed  Google Scholar 

  • Neumann H., Schmidt H., Cavalie A., Jenne D., and Wekerle H. (1997) Major histocompatibility complex (MHC) class I gene expression in single neurons of the central nervous system: differential regulation by interferon (IFN)-gamma and tumor necrosis factor (TNF)-alpha. J. Exp. Med. 185, 305–316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen M. D., Julien J. P., and Rivest S. (2002) Innateimmunity: the missing link in neuroprotection and neurodegeneration? Nat. Rev. Neurosci. 3, 216–227.

    Article  CAS  PubMed  Google Scholar 

  • Paquet-Durand F., Tan S., and Bicker G. (2003) Turning teratocarcinoma cells into neurons: rapid differentiation of NT-2 cells in floating spheres. Brain Res. Dev. Brain Res. 142, 161–167.

    Article  CAS  PubMed  Google Scholar 

  • Pereira R. A. and Simmons A. (1999) Cell surface expression of H2 antigens on primary sensory neurons in response to acute but not latent herpes simplex virus infection in vivo. J. Virol. 73, 6484–6489.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pleasure S. J., Page C., and Lee V. M. (1992) Pure, postmitotic, polarized human neurons derived from NTera 2 cells provide a system for expressing exogenous proteins in terminally differentiated neurons. J. Neurosci. 12, 1802–1815.

    CAS  PubMed  Google Scholar 

  • Prehaud C. F. Megret F., Lafage M., and Lafon M. (2005) Virus infection switches TLR-3-positive human neurons to become strong producers of interferon-beta. J. Virol. 79, 12,893–12,904.

    Article  CAS  Google Scholar 

  • Redwine J. M., Buchmeier M. J., and Evans C. F. (2001) In vivo expression of major histocompatibility complex molecules on oligodendrocytes and neurons during viral infection. Am. J. Pathol. 159, 1219–1224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scolding N. J., Frith S., Linington C., Morgan B. P., Campbell A. K., and Compston D. A. (1989) Myelin-oligodendrocyte glycoprotein (MOG) is a surface marker of oligodendrocyte maturation. J. Neuroimmunol. 22, 169–176.

    Article  CAS  PubMed  Google Scholar 

  • Siren J., Pirhonen J., Julkunen I., and Matikainen S. (2005) IFN-alpha regulates TLR-dependent gene expression of IFN-alpha, IFN-beta, IL-28, and IL-29. J. Immunol. 174, 1932–1937.

    Article  CAS  PubMed  Google Scholar 

  • Takeda K. and Akira S. (2004) TLR signaling pathways. Semin. Immunol. 16, 3–9.

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi O., Hoshino K., Kawai T., Sanjo H., Takada H., Ogawa T., et al. (1999) Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11, 443–451.

    Article  CAS  PubMed  Google Scholar 

  • tenOever B. R., Sharma S., Zou W., Sun Q., Grandvaux N., Julkunen I., et al. (2004) Activation of TBK1 and IKK epsilon kinases by vesicular stomatitis virus infection and the role of viral ribonucleoprotein in the development of interferon antiviral immunity. J. Virol. 78, 10,636–10,649.

    Article  CAS  Google Scholar 

  • Trojanowski J. Q., Kleppner S. R., Hartley R. S., Miyazono M., Fraser N. W., Kesari S., and Lee V. M. (1997) Transfectable and transplantable postmitotic human neurons: a potential “platform” for gene therapy of nervous system diseases. Exp. Neurol. 144, 92–97.

    Article  CAS  PubMed  Google Scholar 

  • Wang Z. W., Sarmento L., Wang Y., et al. (2005) Attenuated rabies virus activates, while pathogenic rabies virus evades, the host innate immune responses in the central nervous system. J. Virol. 79(19), 12,554–12,565.

    Article  CAS  Google Scholar 

  • Wright G. J., Puklavec M. J., Willis A. C., Hoek R. M., Sedgwick J. D., Brown M. H., and Barclay A. N. (2000) Lymphoid/neuronal cell surface OX2 glycoprotein recognizes a novel receptor on macrophages implicated in the control of their function. Immunity 13, 233–242.

    Article  CAS  PubMed  Google Scholar 

  • Yang E., Shin J. S., Kim H., Park H. W., Kim M. H., Kim S. J., and Choi I. H. (2004) Cloning of TLR3 isoform. Yonsei Med. J. 45, 359–361.

    Article  CAS  PubMed  Google Scholar 

  • Younkin D. P., Tang C. M., Hardy M., Reddy U. R., Shi Q. Y., Pleasure S. J., et al. (1993) Inducible expression of neuronal glutamate receptor channels in the NT2 human cell line. Proc. Natl. Acad. Sci. U. S. A. 90, 2174–2178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monique Lafon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lafon, M., Megret, F., Lafage, M. et al. The innate immune facet of brain. J Mol Neurosci 29, 185–194 (2006). https://doi.org/10.1385/JMN:29:3:185

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:29:3:185

Index Entries

Navigation