Skip to main content
Log in

α-synuclein fission yeast model

Concentration—Department aggregation without plasma membrane localization or toxicity

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Despite fission yeast's history of modeling salient cellular processes, it has not yet been used to model human neurodegeneration-linked protein misfolding. Because α-synuclein misfolding and aggregation are linked to Parkinson's disease (PD), here, we report a fission yeast (Schizosaccharomyces pombe) model that evaluates α-synuclein misfolding, aggregation, and toxicity and compare these properties with those recently characterized in budding yeast (Saccharomyces cerevisiae). Wild-type α-synuclein and three mutants (A 30P, A53T, and A30P/A53T) were expressed with thiamine-repressible promoters (using vectors of increasing promoter strength: pNMT81, pNMT41, and pNMT1) to test directly in living cells the nucleation polymerization hypothesis for α-synuclein misfolding and aggregation. In support of the hypothesis, wild-type and A53T α-synuclein formed prominent intracellular cytoplasmic inclusions within fission yeast cells in a concentration- and time-dipendent manner, whereas A30P and A30P/A53T remained diffuse throughhout the cytoplasm. A53T α-synuclein for med aggregates faster than wild-type α-synuclein and at a lower α-synuclein concentration. Unexpectedly, unlike in budding yeast, wild-type and A53T α-synuclein did not target to the plasma membrane in fission yeast, not even at low α-synuclein concentrations or as a precursor step to forming aggregates. Despite α-synuclein's extensive aggregation, it was surprisingly nontoxic to fission yeast. Future genetic dissection might yield molecular insight into this protection against toxicity. We speculate that α-synuclein toxicity might be linked to its membrane binding capacity. To conclude, S. pombe and S. cerevisiae model similar yet distinct aspects of α-synuclein biology, and both organisms shed insight into α-synuclein's role in PD pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alfa C., et al., eds. (1993) Experiments with Fission Yeast, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Auluck P., Chan E., Trojanowski J., Lee, V., and Bonini N. (2002) Chaperone suppression of α-synuclein toxicity in a Drosophila model for Parkinson's disease. Science 295, 865–868.

    Article  PubMed  CAS  Google Scholar 

  • Bussell R. Jr. and Eliezer D. (2004) Effects of Parkinson's disease-linked mutations on the structure of lipidassociated alpha-synuclein. Biochemistry 43, 4810–4818.

    Article  PubMed  CAS  Google Scholar 

  • Caughey B. and Lamsbury P.T. (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26, 267–298.

    Article  PubMed  CAS  Google Scholar 

  • Cole N.B., Murphy D.D., Grider T., Rueter S., Brasaemle D., and Nussbaum R. L. (2000) Lipid droplet binding and oligomerization properties of the Parkinson's disease protein alpha-synuclein. J. Biol. Chem. 277, 6344–6352.

    Article  Google Scholar 

  • Conway K., Harper J., and Lansbury P. (1998) Accelerated in vitro fibril formation by a mutant α-synuclein linked to early-onset Parkinson's disease. Nat. Med. 4, 1318–1320.

    Article  PubMed  CAS  Google Scholar 

  • Conway K., Harper J., and Lansbury P. (2000) Fibrils formed in vitro from α-synuclein and two mutant forms linked to Parkinson's disease are typical amyloid. Biochemistry 39, 2552–2563.

    Article  PubMed  CAS  Google Scholar 

  • Dauer W. and Przedborski S. (2003) Parkinson's disease: mechanisms and models. Neuron 39, 889–909.

    Article  PubMed  CAS  Google Scholar 

  • Davidson W.S., Jonas A., Clayton D.F., and George J.M. (1998) Stabilization of alpha-synuclein secondary structure uponbinding to synthetic membranes. J. Biol. Chem. 273, 9443–9449.

    Article  PubMed  CAS  Google Scholar 

  • Davis L. and Smith G.R. (2001) Meiotic recombination and chromosome segregation in Schizosaccharomyces pombe. Proc. Natl Acad. Sci. U. S. A. 98, 8395–8402.

    Article  PubMed  CAS  Google Scholar 

  • Dawson T.M. and Dawson V.L. (2003) Molecular pathways of neurodegeneration in Parkinson's disease. Science 302, 819–822.

    Article  PubMed  CAS  Google Scholar 

  • Ding T.T., Lee S.J., Rochet J.C., and Lansbury P.T. Jr. (2002) Annular alpha-synuclein protofibrils are produced whenspherical protofibrils are incubated in solution or bound to brain-derived membranes. Biochemistry 41, 10,209–10,217.

    Article  CAS  Google Scholar 

  • Dixon C., Mathias N., Zwieg R.M., Davis D.A., and Gross D.S. (2005) Alpha-Synuclein targets the plasma membrane via the secretory pathway and induces toxicity in yeast. Genetics 170, 47–59.

    Article  PubMed  CAS  Google Scholar 

  • Eigen M. (1996) Trionics or the kinetic basis of prion diseases. Biophys. Chem. 63, A1–18.

    Article  PubMed  CAS  Google Scholar 

  • Fantes P. and Beggs J. (2000). The Yeast Nucleus, Oxford University Press, Oxford, U.K.

    Google Scholar 

  • Feany M. and Bender W. (2000) A Drosophila model of Parkinson's disease. Nature 23, 294–298.

    Google Scholar 

  • Feany M. and Bender W. (2000) A Drosophila model of Parkinson's disease. Nature 23, 294–298.

    Google Scholar 

  • Fernandez S., Homann M.J., Henry S.A., and Carman G. M. (1986) Metabolism of the phospholipid precursor inositol and its relationship to growth and viability in the natural auxotroph. Schizosaccharomyces pombe. J. Bacteriol. 166, 779–786.

    PubMed  CAS  Google Scholar 

  • George J.M., Jin H., Woods W.S., Clayton D. F. (1995) Characterisation of a novel protein regulated during the critical period for song-learning in the Zebra Finch. Neuron 15, 361–372.

    Article  PubMed  CAS  Google Scholar 

  • Giasson B., Uryu K., Trojanowski J., and Lee V. (1999) Mutant and wild type human α-synucleins assemble into elongated filaments with distinct morphologies in vitro. J. Biol. Chem. 274, 7619–7622.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg M.S. and Lansbury P.T. Jr. (2000) Is there a cause and effect relationship between alpha-synuclein fibrillization and Parkinson's disease?. Nat. Cell Biol., 2, E115-E119.

    Article  PubMed  CAS  Google Scholar 

  • Haass C. and Steiner H. (2001) Protofibrils, the unifying toxic molecule of neurodegenerative disorders? Nat. Neurosci. 4, 859–860.

    Article  PubMed  CAS  Google Scholar 

  • Hardy J. and Selkoe D.J. (2002) The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353–356.

    Article  PubMed  CAS  Google Scholar 

  • Harper J.D. and Lansbury P.T. Jr. (1997) Models of amyloid seeding in Alzheimer's disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu. Rev. Biochem. 66, 385–407.

    Article  PubMed  CAS  Google Scholar 

  • Humphrey T. (2000) DNA damage and cell cycle control in Schizosaccharomyces pombe. Mutat. Res. 451, 211–226.

    PubMed  CAS  Google Scholar 

  • Irizarry M.C., Kim T.W., McNamara M., Tanzi R. E., George J. M. Clayton D.F., and Hyman B.T. (1996) Characterization of the precursor protein of the non-A β-component of senile plaques (NACP) in the human central nervous system. J. Neuropathol. Exp. Neurol. 55, 889–895.

    PubMed  CAS  Google Scholar 

  • Iwai A., Masliah E., Yoshimoto M., Ge N., Flanagan L., Rohan de Silva H.A., et al. (1995) The precursor protein of non-A β-component of Alzheimer's disease amyloid is a presynaptic protein of the central nervous system. Neuron 14, 467–475.

    Article  PubMed  CAS  Google Scholar 

  • Jarrett J.T. and Lansbury P.T. Jr (1993) Seeding “one dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73, 1055–1058.

    Article  PubMed  CAS  Google Scholar 

  • Jensen P.H., Nielsen M., Jakes R., Dottis C.G., and Goedert M. (1998) Binding of α-synuclein to brain vesicles is abolished by familial Parkinson's disease mutation. J. Biol. Chem. 273, 26,292–26,294.

    CAS  Google Scholar 

  • Jo E., Fuller N., Rand R.P., St George-Hyslop P., and Fraser P.E. (2002) Defective membrane interactions of familial Parkinson's disease mutant A30P alpha-synuclein. J. Mol. Biol. 315, 799–807.

    Article  PubMed  CAS  Google Scholar 

  • Jo E., McLaurin J., Yip C.M., St George-Hyslop P., and Fraser P.E. (2000) Alpha-Synuclein membrane interactions and lipid specificity. J. Biol. Chem. 275, 34,328–34,334.

    CAS  Google Scholar 

  • Kahle P.J., Neumann M., Ozmen L., Müller V., Jacobsen H., Schindzielorz A., et al. (2000) Subcellular localization of wild-type and Parkinson's disease-associated mutant α-synuclein in human and transgenic mouse brain. J. Neurosci, 20, 6365–6373.

    PubMed  CAS  Google Scholar 

  • Krobitsch S. and Lindquist S. (2000) Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc. Natl. Acad. Sci. U. S. A. 97, 1589–1594.

    Article  PubMed  CAS  Google Scholar 

  • Kunst C., Mezey E., Brownstein M., and Patterson D. (1997) Mutations in SOD1 associated with amylotrophic lateral sclerosis cause novel protein interactions. Nat. Genet. 15, 91–94.

    Article  PubMed  CAS  Google Scholar 

  • Lansbury P.T. Jr. (1999) Evolution of amyloid: what normal protein folding may tell us about fibrillogenesis and disease. Proc. Natl. Acad. Sci. U. S. A. 96, 3342–3344.

    Article  PubMed  CAS  Google Scholar 

  • Lashuel H.A., Hartley D., Petre B.M., Walz T., and Lansbury P.T. Jr. (2002) Neurodegenerative diseases: amyloid pores from pathogenic mutations. Nature 418, 291.

    Article  PubMed  CAS  Google Scholar 

  • Lasko M., Vartiainen S., Moilanen A., Sirvio J., Thomas J.H., Nass R., et al. (2003) Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human α-synuclein. J. Neurochem. 86, 165–172.

    Article  Google Scholar 

  • Lee H.J., Choi C., and Lee S.J. (2002) Membrane-bound α-synuclein has a high aggregation propensity and the ability to seed the aggregation of the cytosolic form. J. Biol. Chem. 277, 671–678.

    Article  PubMed  CAS  Google Scholar 

  • Lee M.K., Stirling W., Xu Y., Xu X., Qui D., et al. (2002) Human alpha-synuclein-harboring familial Parkinson's disease-linked Ala-53→Thr mutation causes neurodegenerative disease with alpha-synuclein aggregation in transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 99, 8968–8973.

    Article  PubMed  CAS  Google Scholar 

  • Li J., Uversky V.N., and Fink A.L. (2001) Effect of familial Parkinson's disease point mutations A30P and A53T on the structural properties, aggregation, and fibrillation of human alpha-synuclein. Biochemistry, 40, 604–613.

    Google Scholar 

  • Lotharius J. and Brundin P. (2002) Pathogenesis of Parkinson's disease: dopamine, vesicles and alpha-synuclein. Nat. Rev. Neurosci. 3, 932–942.

    Article  PubMed  CAS  Google Scholar 

  • Ma J. and Lindquist S. (1999) De novo generation of a PrP-like conformation in living cells. Nat. Cell Biol. 1, 358–361.

    Article  PubMed  CAS  Google Scholar 

  • Maroteaux L. and Scheller R.H. (1991) The rat brain synucleins; family of proteins transiently expressed in the neuronal membrane. Mol. Brian Res. 11, 335–343.

    Article  CAS  Google Scholar 

  • McLean P.J., Kawamata H., Ribich S., and Hyman B.T. (2000) Membrane association and protein conformation of α-synuclein in intact neurons. Effect of Parkinson's disease-linked mutations. J. Biol. Chem. 275, 8812–8816.

    Article  PubMed  CAS  Google Scholar 

  • Muchowski P.J., Ning K., D'Souza-Schorey C., and Fields S. (2002) Requirement of an intact microtubule cytoskeleton for aggregation and inclusion body formation by a mutant huntingtin fragment. Proc. Natl. Acad. Sci. U. S. A. 99, 727–732.

    Article  PubMed  CAS  Google Scholar 

  • Narayanan V., Guo Y., and Scarlata S. (2005) Fluorescence studies suggest a role for alpha-synuclein in the phosphatidylinositol lipid signaling pathway. Biochemistry 44, 462–470.

    Article  PubMed  CAS  Google Scholar 

  • Narhi L., Wood S.J., Steavenson S., Jiang Y., Wu G.M., Anafi D., et al. (1999) Both familial Parkinson's disease mutations accelerate α-synuclein aggregation. J. Biol. Chem. 274, 9843–9846.

    Article  PubMed  CAS  Google Scholar 

  • Necula M., Chirita C.N., and Kuret J. (2003) Rapid anionic micelle-mediated alpha-synuclein fibrillization in vitro. J. Biol. Chem. 278, 46,674–46,680.

    Article  CAS  Google Scholar 

  • Olanow C.W. and Tatton W.A. (1999) Etiology and pathogenesis of Parkinson's disease. Annu. Rev. Neurosci. 22, 123–144.

    Article  PubMed  CAS  Google Scholar 

  • Outeiro T. F. and Lindquist S. (2003) Yeast cells provide insight into alpha-synuclein biology and pathobiology. Science 203, 1772–1775.

    Article  Google Scholar 

  • Outeiro T.F. and Muchowski P.J. (2004) Molecular genetics approaches in yeast to study amyloid diseases. J. Mol. Neurosci. 23, 49–60.

    Article  PubMed  CAS  Google Scholar 

  • Perrin R.J. Woods W.S., Clayton D.F., and George J.M. (2001) Ekposure to long chain polyunsaturated fatty acids triggers rapid multimerization of synucleins. J. Biol. Chem. 276, 41,958–41,962.

    CAS  Google Scholar 

  • Perrin R.J. Woods W.S., Clayton D.F., and George J.M. (2000) Interaction of human α-synuclein and Parkinson's disease variants with phospholipids J. Biol. Chem. 275, 34,393–34,398.

    Article  CAS  Google Scholar 

  • Perutz M. F. and Windle A. H. (2001) Cause of neural death in neurodegenerative diseases attributable to expansion of glutamine repeats. Nature 412, 143, 144.

    Article  Google Scholar 

  • Rochet J.C., Conway K.A., and Lansbury P.T. Jr. (2000) Inhibition of fibrillization and accumulation of prefibrillar oligomers in mixtures of human and mouse alphasynuclein. Biochemistry 39, 10,619–10,626.

    CAS  Google Scholar 

  • Rochet J.C., Outeiro T.F., Conway K.A., Ding T.T., Volles M.J., Lashuel H.A., et al. (2004) Interactions among alpha-synuclein, dopamine, and biomembranes: some clues for understanding neurodegeneration in Parkingson's disease. J. Mol. Neurosci. 23, 23–34.

    Article  PubMed  CAS  Google Scholar 

  • Sharma N., Brandis K., Herrera S., Johnson B., Vaidya T., and DebBurman S.K. (2006) α-Synuclein budding yeast model: toxicity enhanced by impaired proteasome and oxidative stress. J. Mol. Neurosci. 28 (2), 161–178.

    Article  PubMed  CAS  Google Scholar 

  • Sharon R., Goldberg M., Bar I., Betensky R., Shen J., and Selkoe D. (2001) α-Synuclein occurs in lipid-rich high molecular weight complexes, binds fatty acids, and shows homology to the fatty-acid binding proteins. Proc. Natl. Acad. Sci. U.S.A. 98, 9110–9115.

    Article  PubMed  CAS  Google Scholar 

  • Shibayama-Imazu T., Okahashi I., Omata K., Nakajo S., Ochiai H., Nakai Y., et al. (1993) Cell and tissue distribution and developmental change of neuron specific 14 kDa protein (phosphoneuroprotein 14). Brain Res., 622, 17–25.

    Article  PubMed  CAS  Google Scholar 

  • Shtilerman M.D., Ding T.T., and Lansbury P.T. Jr. (2002). Molecular crowding accelerates fibrillization of alphasynuclein: could an increase in the cytoplasmic protein concentration induce Parkinson's disease? Biochemistry 41, 3855–3860.

    Article  PubMed  CAS  Google Scholar 

  • Sisodia S.S. (1998) Nuclear inclusions inglutamine repoet disorders: are they pernicious, coincidental, or beneficial?. Cell 95, 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Spillantini, M., Schmidt M., Lee, V., Trojanowski J., Jakes R., and Goedert M (1998) α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease. Proc. Natl. Acad. Sci. U. S. A. 95, 6469–6473.

    Article  PubMed  CAS  Google Scholar 

  • Taylor J.P., Hardy J., and Fishbeck K.H. (2002) Toxic proteins in neurodegenerative disease. Science 296, 1991–1995.

    Article  PubMed  CAS  Google Scholar 

  • Volles M.J. and Lansbury P.T. Jr. (2002) Vesicle permeabilization by protofibrillar alpha-synuclein is sensitive to Parkinson's disease-linked mutations and occurs by a pore-like mechanism. Biochemistry 41, 4595–4602.

    Article  PubMed  CAS  Google Scholar 

  • Volles M.J., Lee S.J., Rochet J.C., Shtilerman M.D., Ding T.T., Kessler J.C., and Lansbury P.T. Jr. (2001) Vesicle permeabilization by protofibrillar alpha-synuclein: implications for the pathogenesis and treatment of Parkinson's disease. Biochemistry 40, 7812–7819.

    Article  PubMed  CAS  Google Scholar 

  • Willingham S., Outeiro T.F., DeVit M.J., Lindquist S., and Muchowski P.J. (2003) Yeast genes that enhance the toxicity of a mutant huntingtin or α-synuclein. Science 302, 1769–1772.

    Article  PubMed  CAS  Google Scholar 

  • Wood S.J., Wypch J., Steavenson, S., Louis, J.C., Citron M., and Biere A.L. (1999) Alpha-synuclein fibrillogenesis is nucleation-dependent. Implications for the pathogenesis of Parkinson's disease. J. Biol. Chem. 274, 509–512.

    Google Scholar 

  • Wood V., Gwilliam R., Rajandream M.A., et al (2002). The genome sequence of Schizos accharomyces pombe. Nature 415, 871–880.

    Article  PubMed  CAS  Google Scholar 

  • Zabrocki P., Pellens K., Vanhelmont T., Vandebroek T., Griffioen G., Wera S., et al. (2005) Characterization of α-synuclein aggregation and synergistic toxicity of protein tau in yeast. FEBS J. 272, 1386–1400.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubhik K. DebBurman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandis, K.A., Holmes, I.F., England, S.J. et al. α-synuclein fission yeast model. J Mol Neurosci 28, 179–191 (2006). https://doi.org/10.1385/JMN:28:2:179

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:28:2:179

Index Entries

Navigation