Skip to main content
Log in

Effect of amyloid peptides on the increase in TrkA receptor expression induced by nicotine in vitro and in vivo

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The ability of nicotine to induce a cytoprotective or neuroprotective action occurs through several down-stream mechanisms. One possibility is that the drug increases the expression of tyrosine kinase A (TrkA) nerve growth factor (NGF) receptors. Certain β-amyloid peptides (e.g., Aβ1–42) have been shown to bind with high affinity to α7 nicotinic receptors and thus interfere with a potentially neurotrophic influence. Treatment of differentiated PC-12 cells with nicotine produced a concentration-dependent increase in cell-surface TrkA receptors that occurred concomitantly with cytoprotection. The effect of nicotine was blocked by either of the α7 receptor antagonists α-bungarotoxin (α-BTX) or methyllycaconatine. The cytoprotective action of nicotine also was inhibited by pretreatment with 10–100 nM Aβ1–42. Nicotine also was administered (four injections of 30 µg, spaced evenly over 24 h) to rats by direct injection into a lateral cerebral ventricle. Brain TrkA expression was increased significantly in hippocampus and entorhinal cortex (up to 32% above control), with no changes found in cerebral cortex or hypothalamus. The nicotine-induced increases in TrKA expression in hippocampus and entorhinal cortex were significantly inhibited by 10 µg α-BTX or by 10 nmol Aβ1–42. Therefore, physiologically relevant concentrations of Aβ1–42 can prevent nicotine-induced TrkA receptor expression in brain regions containing cholinergic neurons susceptible to the neurotoxicity associated with Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbacid M. (1994) The Trk family of neurotrophin receptors. J. Neurobiol. 25, 1386–1403.

    Article  PubMed  CAS  Google Scholar 

  • Blumenthal E. M., Conroy W. G., Romano S. J., Kassner P. D., and Berg D. K. (1997) Detection of functional nicotinic receptors blocked by α-bungarotoxin on PC-12 cells and dependence of their expression on post-translational events. J. Neurosci. 17, 6094–6104.

    PubMed  CAS  Google Scholar 

  • Boissiere F., Hunot S., Faucheux B., Hersh L. B., Agid Y., and Hirsch E. C. (1997) Trk neurotrophin receptors in cholinergic neurons of patients with Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 8, 1–8.

    PubMed  CAS  Google Scholar 

  • Buccafusco J. J. (2004) Neuronal nicotinic receptor subtypes: defining therapeutic targets. Mol. Interventions 4, 285–295.

    Article  CAS  Google Scholar 

  • Capsoni S., Ugolini G., Comparini A., Ruberti F., Berardi N., and Cattaneo A. (2000) Alzheimer-like neurodegeneration in aged antinerve growth factor transgenic mice. Proc. Natl. Acad. Sci. U. S. A. 97, 6826–6831.

    Article  PubMed  CAS  Google Scholar 

  • Carlson N. G., Bacchi A., Rogers S. W., et al. (1998) Nicotine blocks TNF-alpha-mediated neuroprotection to NMDA by an alpha-bungarotoxin-sensitive pathway. J. Neurobiol. 35, 29–36.

    Article  PubMed  CAS  Google Scholar 

  • Chao M. V. (1992) Neurotrophin receptors: a window into neuronal differentiation. Neuron 9, 583–593.

    Article  PubMed  CAS  Google Scholar 

  • Clary D. O., Weskamp G., Austin L. R., and Reichardt L. F. (1994) TrkA cross-linking mimics neuronal responses to nerve growth factor. Mol. Biol. Cell 5, 549–563.

    PubMed  CAS  Google Scholar 

  • Craft J. M., Van Eldik L. J., Zasadzki M., Hu W., and Watterson D.M. (2004a) Aminopyridazines attenuate hippocampus-dependent behavioral deficits induced by human β-amyloid in a murine model of neuroin-flammation. J. Mol. Neurosci. 24, 115–122.

    Article  PubMed  CAS  Google Scholar 

  • Craft J. M., Watterson D. M., Frautschy S. A., and Van Eldik L. J. (2004b) Aminopyridazines inhibit β-amyloid-induced glial activation and neuronal damage in vivo. Neurobiol. Aging 25, 1283–1292.

    Article  PubMed  CAS  Google Scholar 

  • Dajas-Bailador F. A., Lima P. A., and Wonnacott S. (2000) The alpha7 nicotinic acetylcholine receptor subtype mediates nicotine protection against NMDA excitotoxicity in primary hippocampal cultures through a Ca(2+) dependent mechanism. Neuropharmacology 39, 2799–2807.

    Article  PubMed  CAS  Google Scholar 

  • Donnelly-Roberts D. L., Xue I. C., Arneric S. P., and Sullivan J. P. (1996) In vitro neuroprotective properties of the novel cholinergic channel activator (ChCA), ABT-418. Brain Res. 719, 36–44.

    Article  PubMed  CAS  Google Scholar 

  • Drisdel R. C. and Green W. N. (2000) Neuronal α-bungarotoxin receptors are α7 subunit homomers. J. Neurosci. 20, 133–139.

    PubMed  CAS  Google Scholar 

  • Etienne P., Robitaille Y., Wood P., Gauthier S., Nair N. P., and Quirion R. (1986) Nucleus basalis neuronal loss, neuritic plaques and choline acetyltransferase activity in advanced Alzheimer’s disease. Neuroscience 19, 1279–1291.

    Article  PubMed  CAS  Google Scholar 

  • Frautschy S. A., Fusheng Y., Calderón L., and Cole G. M. (1996) Rodent Models of Alzheimer’s disease: rat Aβ infusion approaches to amyloid deposits. Neurobiol. Aging, 17, 311–321.

    Article  PubMed  CAS  Google Scholar 

  • Gattu M., Pauly J. R., Boss K., Summers J. B., and Buccafusco J. J. (1997) Cognitive impairment in spontaneously hypertensive rats: role of central nicotinic receptors. I. Brain Res. 771, 89–103.

    Article  PubMed  CAS  Google Scholar 

  • Gearhart D. A., Middlemore M. L., and Terry A. V. (2004) Development of ELISA methods to quantify cholinergic markers in rat brain lysates. Soc. Neurosci. Abstr. 30, Program no. 695.8.

  • Harkany T., Hortobagyi T., Sasva’ri M., et al. (1999) Neuroprotective approaches in experimental models of β-amyloid neurotoxicity: relevance to Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 23, 963–1008.

    CAS  Google Scholar 

  • Hartikka J. and Hefti F. (1988) Comparison of nerve growth factor’s effects on development of septum, striatum, and nucleus basalis cholinergic neurons in vitro. J Neurosci. Res. 21, 352–364.

    Article  PubMed  CAS  Google Scholar 

  • Hefti F. and Knusel B. (1988) Chronic administration of nerve growth factor and other neurotrophic factors to the brain. Neurobiol. Aging 9, 689–690.

    Article  PubMed  CAS  Google Scholar 

  • Hellstrom-Lindahl E., Court J., Keverne J., et al. (2004a) Nicotine reduces A beta in the brain and cerebral vessels of APPsw mice. Eur. J. Neurosci. 19, 2703–2710.

    Article  PubMed  Google Scholar 

  • Hellstrom-Lindahl E., Mousavi M., Ravid R., and Nordberg A. (2004b) Reduced levels of Abeta 40 and Abeta 42 in brains of smoking controls and Alzheimer’s patients. Neurobiol. Dis. 15, 351–360.

    Article  PubMed  CAS  Google Scholar 

  • Henderson L. P., Gdovin M. J., Liu C., Gardner P. D., and Maue R. A. (1994) Nerve growth factor increases nicotinic ACh receptor gene expression and current density in wild-type and protein kinase A-deficient PC-12 cells. J. Neurosci. 14, 1153–1163.

    PubMed  CAS  Google Scholar 

  • Ikarashi Y., Harigaya Y., Tomidokoro Y., et al. (2004) Decreased level of brain acetylcholine and memory disturbance in APPsw mice. Neurobiol. Aging 25, 483–490.

    Article  PubMed  CAS  Google Scholar 

  • Iverson L. L., Mortishire-Smith R. J., Pollack S. J., and Shearman M. S. (1995) The toxicity in vitro of β-amyloid protein. Biochem. J. 311, 1–16.

    Google Scholar 

  • Jonnala R. R. and Buccafusco J. J. (2001) Relationship between cell surface α7 nicotinic receptor expression and neuroprotection induced by several nicotinic receptor agonists. J. Neurosci. Res. 66, 565–572.

    Article  PubMed  CAS  Google Scholar 

  • Jonnala R. R., Terry A. V. Jr., and Buccafusco J. J. (2002) Nicotine increases the expression of high affinity nerve growth factor receptors both in vitro and in vivo. Life Sci. 70, 1543–1554.

    Article  PubMed  CAS  Google Scholar 

  • Jonnala R. R., Graham J. H. III, Terry A. V. Jr., Beach J. W., Young J. A., and Buccafusco J. J. (2003) Relative levels of cytoprotection produced by analogs of choline and the role of α7-nicotinic acetylcholine receptors. Synapse 47, 262–269.

    Article  PubMed  CAS  Google Scholar 

  • Kaneko S., Maeda T., Kume T., et al. (1997) Nicotine protects cultured cortical neurons against glutamate-induced cytotoxicity via alpha7-neuronal receptors and neuronal CNS receptors. Brain Res. 765, 135–140.

    Article  PubMed  CAS  Google Scholar 

  • Kihara T., Shimohama S., Urushitani M., et al. (1998) Stimulation of alpha4beta2 nicotinic acetylcholine receptors inhibits beta-amyloid toxicity. Brain Res. 792, 331–334.

    Article  PubMed  CAS  Google Scholar 

  • Kim H. J., Chae S. C., Lee D. K., et al. (2003) Selective neuronal degeneration induced by soluble oligomeric amyloid beta protein. FASEB J. 17, 118–120.

    PubMed  CAS  Google Scholar 

  • Kim S. H., Kim Y. K., Jeong S. J., Haass C., Kim Y. H., and Suh Y. H. (1997) Enhanced release of secreted form of Alzheimer’s amyloid precursor protein from PC-12 cells by nicotine. Mol. Pharmacol. 52, 430–436.

    PubMed  CAS  Google Scholar 

  • Knusel B. and Hefti F. (1988) Development of cholinergic pedunculopontine neurons in vitro: comparison with cholinergic septal cells and response to nerve growth factor, ciliary neuronotrophic factor, and retinoic acid. J Neurosci. Res. 21, 365–375.

    Article  PubMed  CAS  Google Scholar 

  • Kromer L. F. (1987) Nerve growth factor treatment after brain injury prevents neuronal death. Science 235, 214–216.

    Article  PubMed  CAS  Google Scholar 

  • Lehericy S., Hirsch E. C., Cervera-Pierot P., et al. (1993) Heterogeneity and selectivity of the degeneration of cholinergic neurons in the basal forebrain of patients with Alzheimer’s disease. J. Comp. Neurol. 330, 15–31.

    Article  PubMed  CAS  Google Scholar 

  • Li X. D. and Buccafusco J. J. (2003) Effect of beta-amyloid peptide 1–42 on the cytoprotective action mediated by alpha7 nicotinic acetylcholine receptors in growth factor-deprived differentiated PC-12 cells. J. Pharmacol. Exp. Ther. 307, 670–675.

    Article  PubMed  CAS  Google Scholar 

  • Li X. D. and Buccafusco J. J. (2004) Role of alpha7 nicotinic acetylcholine receptors in the pressor response to intracerebroventricular injection of choline: blockade by amyloid peptide Abeta1–42. J. Pharmacol. Exp. Ther. 309, 1206–1212.

    Article  PubMed  CAS  Google Scholar 

  • Martin E. J., Panicker K. S., King M. A., Deyrup M., Hunter B. E., and Meyer E.M. (1994) Cytoprotective of 2, 4-dimethoxybenzylidene anabaseine in differentiated PC-12 cells and septal cholinergic neurons. Drug Dev. Res. 31, 127–134.

    Article  Google Scholar 

  • Mobley W. C., Rutkowski J. L., Tennekoon G. I., Gemski J., Buchanan K., and Johnston M. V. (1986) Nerve growth factor increases choline acetyltransferase activity in developing basal forebrain neurons. Brain Res. 387, 53–62.

    PubMed  CAS  Google Scholar 

  • Morimoto K. and Oda T. (2003) Kainate exacerbates beta-amyloid toxicity in rat hippocampus. Neurosci. Lett. 340, 242–244.

    Article  PubMed  CAS  Google Scholar 

  • Mufson E. J., Lavine N., Jaffar S., Kordower J. H., Quirion R., and Saragovi H. U. (1997) Reduction in p140-TrkA receptor protein within the nucleus basalis and cortex in Alzheimer’s disease. Exp. Neurol. 146, 91–103.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T., Shoji M., Harigaya Y., et al. (1994) Amyloid beta protein levels in cerebrospinal fluid are elevated in early-onset Alzheimer’s disease. Ann. Neurol. 36, 903–911.

    Article  PubMed  CAS  Google Scholar 

  • Nordberg A. (2001) Nicotinic receptor abnormalities of Alzheimer’s disease: therapeutic implications. Biolog. Psychiatry 49, 200–210.

    Article  CAS  Google Scholar 

  • O’Neill M. J., Murray T. K., Lakics V., Visanji N. P., and Duty S. (2002) The role of neuronal nicotinic acetylcholine receptors in acute and chronic neurodegeneration. Curr. Drug Targets CNS Neurol. Disord. 1, 399–411.

    Article  PubMed  CAS  Google Scholar 

  • Paterson D. and Nordberg A. (2000) Neuronal nicotinic receptors in the human brain. Prog. Neurobiol. 61, 75–111.

    Article  PubMed  CAS  Google Scholar 

  • Perry E. K., Martin-Ruiz C. M., and Court J. A. (2001) Nicotinic receptor subtypes in human brain related to aging and dementia. Alcohol 24, 63–68.

    Article  PubMed  CAS  Google Scholar 

  • Pitchford S., De Moor K., and Glaeser B. S. (1995) Nerve growth factor stimulates rapid metabolic responses in PC-12 cells. Am. J. Physiol. 268, C939-C943.

    Google Scholar 

  • Rangwala F., Drisdel R. C., Rakhilin S., et al. (1997) Neuronal alpha-bungarotoxin receptors differ structurally from other nicotinic acetylcholine receptors. J. Neurosci. 17, 8201–8212.

    PubMed  CAS  Google Scholar 

  • Seguela P., Wadiche J., Dineley-Miller K., Dani J. A., and Patrick J. W. (1993) Molecular cloning, functional properties and distribution of rat brain α7: a nicotinic cation highly permeable to calcium. J. Neurosci. 13, 595–604.

    Google Scholar 

  • Shaw S., Bencherif M., and Marrero M. B (2002) Janus kinase 2, an early target of alpha 7 nicotinic acetylcholine receptor-mediated neuroprotection against Abeta-1-42 amyloid. J. Biol. Chem. 277, 44,920–44,924.

    CAS  Google Scholar 

  • Shimohama S. and Kihara T. (2001) Nicotinic receptor-mediated protection against beta-amyloid neurotoxicity. Biol. Psychiatry 49, 233–239.

    Article  PubMed  CAS  Google Scholar 

  • Snider W. D. (1994) Functions of the neurotrophins during nervous system development: what the knockouts are teaching us. Cell 77, 627–638.

    Article  PubMed  Google Scholar 

  • Wang, H. Y., Lee D. H. S., D’Andrea M. R., Peterson P. A., and Shank R. P. (1999) β-amyloid1–42 binds to α7 nicotinic acetylcholine receptor with high affinity. J. Biol. Chem. 275, 5626–5632.

    Article  Google Scholar 

  • Wang H. Y., Lee D. H. S., Davis C. B., and Shank R. P. (2000) Amyloid peptide Aβ1–42 binds selectively and with picomolar affinity to α7 nicotinic acetylcholine receptors. J. Neurochem. 75, 1155–1161.

    Article  PubMed  CAS  Google Scholar 

  • Whitehouse P. J., Price D. L., Clark A. W., Coyle J. T., and DeLong M. R. (1981) Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann. Neurol. 10, 122–126.

    Article  PubMed  CAS  Google Scholar 

  • Yang X.-H. and Buccafusco J. J. (1994) Effect of chronic central treatment with the acetylcholine analog methylcarbamylcholine on cortical nicotinic receptors: correlation between receptor changes and behavioral function. J. Pharmacol. Exp. Ther. 271, 651–659.

    PubMed  CAS  Google Scholar 

  • Zamani M. R., Allen Y. S., Owen G. P., and Gray J. A. (1997) Nicotine modulates the neurotoxic effect of β-amyloid protein (25–35) in hippocampal cultures. Neuroreport 8, 513–517.

    Article  PubMed  CAS  Google Scholar 

  • Zanardi A., Leo G., Biagini G., and Zoli M. (2002) Nicotine and neurodegeneration in ageing. Toxicol. Lett. 127, 207–215.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry J. Buccafusco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X.D., Arias, E., Jonnala, R.R. et al. Effect of amyloid peptides on the increase in TrkA receptor expression induced by nicotine in vitro and in vivo. J Mol Neurosci 27, 325–336 (2005). https://doi.org/10.1385/JMN:27:3:325

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:27:3:325

Index Entries

Navigation