Skip to main content
Log in

Light and melatonin inhibit in vivo serotonergic phase advances without altering serotonergic-induced decrease of Per expression in the hamster suprachiasmatic nucleus

  • Original Article
  • Diurnal Rhythms
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

In the Syrian hamster a serotonergic (5-HTergic) stimulation during daytime acts on the circadian timing system by inducing behavioral phase advances and by decreasing Per1 and Per2 (Period) mRNA levels in the suprachiasmatic nuclei, containing the main circadian clock in mammals. The present study was conducted in Syrian hamsters, housed in constant darkness, to investigate the interactions between light or melatonin with serotonergic stimulation in terms of phase resetting and clock gene expression. Both light exposure and systemic administration of melatonin prior to the injection of a 5-HT1A/7 receptor agonist, 8-OH-DPAT, in the middle of the day blocked behavioral phase advances. In contrast, neither light nor melatonin treatment during day-time prevented serotonergic-induced down-regulation of Per1 and /or Per2 mRNA levels in the suprachiasmatic nuclei. Taken together, the results show that interactions between afferent cues to the suprachiasmatic nuclei differentially modulate phase adjustment and clock gene expression during daytime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Antle M. C., Ludgate S., and Mistlberger R. E. (2002) Activity-induced circadian clock resetting in the Syrian hamster: effects of melatonin. Neurosci. Lett. 317, 5–8.

    Article  PubMed  CAS  Google Scholar 

  • Barassin S., Raison S., Saboureau M., Bienvenu C., Maitre M., Malan A., and Pevet P. (2002) Circadian tryptophan hydroxylase levels and serotonin release in the suprachiasmatic nucleus of the rat. Eur. J. Neurosci. 15, 833–840.

    Article  PubMed  Google Scholar 

  • Benloucif S., Masana M. I., Yun K., and Dubocovich M. L. (1999) Interactions between light and melatonin on the circadian clock of mice. J. Biol. Rhythms 14, 281–289.

    Article  PubMed  CAS  Google Scholar 

  • Bobrzynska K. J., Godfrey M. H., and Mrosovsky N. (1996) Serotonergic stimulation and nonphotic phase-shifting in hamsters. Physiol. Behav. 59, 221–230.

    Article  PubMed  CAS  Google Scholar 

  • Caldelas I., Poirel V. J., Sicard B., Pevet P., and Challet E. (2003) Circadian profile and photic regulation of clock genes in the suprachiasmatic nucleus of a diurnal mammal Arvicanthis ansorgei. Neuroscience 116, 583–591.

    Article  PubMed  CAS  Google Scholar 

  • Challet E. and Pevet P. (2003) Interactions between photic and nonphotic stimuli to synchronize the master circadian clock in mammals. Front. Biosci. 8, S246-S257.

    Article  PubMed  CAS  Google Scholar 

  • Challet E., Poirel V. J., Malan A., and Pevet P. (2003) Light exposure during daytime modulates expression of Per1 and Per2 clock genes in the suprachiasmatic nuclei of mice. J. Neurosci. Res. 72, 629–637.

    Article  PubMed  CAS  Google Scholar 

  • Challet E., Scarbrough K., Penev P. D., and Turek F. W. (1998) Roles of suprachiasmatic nuclei and intergeniculate leaflets in mediating the phase-shifting effects of a serotonergic agonist and their photic modulation during subjective day. J. Biol. Rhythms 13, 410–421.

    Article  PubMed  CAS  Google Scholar 

  • Cutrera R. A., Kalsbeek A., and Pevet P. (1994) Specific destruction of the serotonergic afferents to the suprachiasmatic nuclei prevents triazolam induced phase advances of hamster activity rhythms. Behav. Brain Res. 62, 21–28.

    Article  PubMed  CAS  Google Scholar 

  • Cutrera R. A., Saboureau M., and Pevet P. (1996) Phaseshifting effect of 8-OH-DPAT, a 5-HT1A/5-HT7 receptor agonist, on locomotor activity in golden hamster in constant darkness. Neurosci. Lett. 210, 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Daan S. and Pittendrigh C. S. (1976) A functional analysis of circadian pacemakers in nocturnal rodents. II. The variability of phase response curves. J. Comp. Physiol. 106, 253–266.

    Article  Google Scholar 

  • Dudley T. E., DiNardo L. A., and Glass J. D. (1998) Endogenous regulation of serotonin release in the hamster suprachiasmatic nucleus. J. Neurosci. 18, 5045–5052.

    PubMed  CAS  Google Scholar 

  • Ebling F. J. P. (1996) The role of glutamate in the photic regulation of the suprachiasmatic nucleus. Prog. Neurobiol. 50, 109–132.

    Article  PubMed  CAS  Google Scholar 

  • Ebling F. J., Maywood E. S., Humby T., and Hastings M. H. (1992) Circadian and photoperiodic time measurement in male Syrian hamsters following lesions of the melatonin-binding sites of the paraventricular thalamus. J. Biol. Rhythms 7, 241–254.

    Article  PubMed  CAS  Google Scholar 

  • Edgar D. M., Miller J. D., Prosser R. A., Dean R. R., and Dement W. C. (1993) Serotonin and the mammalian circadian system. II. Phase-shifting rat behavioral rhythms with serotonergic agonists. J. Biol. Rhythms 8, 17–31.

    Article  PubMed  CAS  Google Scholar 

  • Ehlen J. C., Grossman G. H., and Glass J. D. (2001) In vivo resetting of the hamster circadian clock by 5-HT7 receptors in the suprachiasmatic nucleus. J. Neurosci. 21, 5351–5357.

    PubMed  CAS  Google Scholar 

  • Fukuhara C., Brewer J. M., Dirden J. C., Bittman E. L., Tosini G., and Harrington M. E. (2001) Neuropeptide Y rapidly reduces Period 1 and Period 2 mRNA levels in the hamster suprachiasmatic nucleus. Neurosci. Lett. 314, 119–122.

    Article  PubMed  CAS  Google Scholar 

  • Grossman G. H., Farnbauch L., and Glass J. D. (2004) Regulation of serotonin release in the Syrian hamster intergeniculate leaflet region. Neuro Report 15, 103–106.

    CAS  Google Scholar 

  • Hannibal J., Jamen F., Nielsen H. S., Journot L., Brabet P., and Fahrenkrug J. (2001) Dissociation between light-induced phase shift of the circadian rhythm and clock gene expression in mice lacking the pituitary adenylate cyclase activating polypeptide type 1 receptor. J. Neurosci. 21, 4883–4890.

    PubMed  CAS  Google Scholar 

  • Hastings M. H., Mead S. M., Vindlacheruvu R. R., Ebling F. J. P., Maywood E. S., and Grosse J. (1992) Nonphotic phase shifting of the circadian activity rhythm of Syrian hamsters: the relative potency of arousal and melatonin. Brain Res. 591, 20–26.

    Article  PubMed  CAS  Google Scholar 

  • Honma S., Kawamoto T., Takagi Y., Fujimoto K., Sato F., Noshiro M., et al. (2002) Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature 419, 841–844.

    Article  PubMed  CAS  Google Scholar 

  • Horikawa K., Yokota S., Fuji K., Akiyama M., Moriya T., Okamura H., and Shibata S. (2000) Nonphotic entrainment by 5-HT1A/7 receptor agonists accompanied by reduced Per1 and Per2 mRNA levels in the suprachiasmatic nuclei. J. Neurosci. 20, 5867–5873.

    PubMed  CAS  Google Scholar 

  • Klein D. C., Moore R. Y., and Reppert S. M. (1991) Suprachiasmatic Nucleus. The Mind’s Clock, Oxford University Press, New York.

    Google Scholar 

  • Malek Z., Pevet P., and Raison S. (2004) Circadian change in tryptophan hydroxylase protein levels within the rat intergeniculate leaflets and raphe nuclei. Neuroscience 125, 749–758.

    Article  PubMed  CAS  Google Scholar 

  • Maywood E. S. and Mrosovsky N. (2001) A molecular explanation of interactions between photic and non-photic circadian clock-resetting stimuli. Gene Expr. Patt. 1, 27–31.

    Article  CAS  Google Scholar 

  • Maywood E. S., Mrosovsky N., Field M. D., and Hastings M. H. (1999) Rapid down-regulation of mammalian Period genes during behavioral resetting of the circadian clock. Proc. Natl. Acad. Sci. USA 96, 15,211–15,216.

    Article  CAS  Google Scholar 

  • Maywood E. S., Okamura H., and Hastings M. H. (2002) Opposing actions of neuropeptide Y and light on the expression of circadian clock genes in the mouse suprachiasmatic nuclei. Eur. J. Neurosci. 15, 216–220.

    Article  PubMed  Google Scholar 

  • Medanic M. and Gillette M. U. (1992) Serotonin regulates the phase of the rat suprachiasmatic circadian pacemaker in vitro only during the subjective day. J. Physiol. 450, 629–642.

    PubMed  CAS  Google Scholar 

  • Meyer-Bernstein E. L. and Morin L. P. (1996) Differential serotonergic innervation of the suprachiasmatic nucleus and the intergeniculate leaflet and its role in circadian rhythm modulation. J. Neurosci. 16, 2097–2111.

    PubMed  CAS  Google Scholar 

  • Mintz E. M., Gillespie C. F., Marvel C. L., Huhman K. L., and Albers H. E. (1997) Serotonergic regulation of circadian rhythms in Syrian hamsters. Neuroscience 79, 563–569.

    Article  PubMed  CAS  Google Scholar 

  • Miyake S., Sumi Y., Yan L., Takekida S., Fukuyama T., Ishida Y., et al. (2000) Phase-dependent responses of Per1 and Per2 genes to a light-stimulus in the suprachiasmatic nucleus of the rat. Neurosci. Lett. 294, 41–44.

    Article  PubMed  CAS  Google Scholar 

  • Moore R. Y. and Leak R. K. (2001) Suprachiasmatic nucleus, in Circadian Clocks, Volume 12, Handbook of Behavioral Neurobiology, Takahashi, J. S., Turek, F. W., Moore, R. Y., eds., Kluwer Academic/Plenum, New York, pp. 141–171.

    Google Scholar 

  • Moore R. Y. and Speh J. C. (1993) GABA is the principal neurotransmitter of the circadian timing system. Neurosci. Lett. 150, 112–116.

    Article  PubMed  CAS  Google Scholar 

  • Morin L. P., Blanchard J., and Moore R. Y. (1992) Intergeniculate leaflet and suprachiasmatic nucleus organization and connections in the golden hamster. Vis. Neurosci. 8, 219–230.

    Article  PubMed  CAS  Google Scholar 

  • Mrosovsky N., Reebs S. G., Honrado G. I., and Salmon P. A. (1989) Behavioural entrainment of circadian rhythms. Experientia 45, 696–702.

    Article  PubMed  CAS  Google Scholar 

  • Penev P. D., Zee P. C., and Turek F. W. (1997) Serotonin in the spotlight. Nature 385, 123–123.

    Article  PubMed  CAS  Google Scholar 

  • Pevet P. (2003) Melatonin: from seasonal to circadian signal. J. Neuroendocrinol. 15, 422–426.

    Article  PubMed  CAS  Google Scholar 

  • Pitrosky B., Kirsch R., Malan A., Mocaer E., and Pevet P. (1999) Organization of rat circadian rhythms during daily infusion of melatonin or S20098, a melatonin agonist. Am. J. Physiol. 277, R812-R828.

    PubMed  CAS  Google Scholar 

  • Poirel V. J., Boggio V., Dardente H., Pevet P., Masson-Pevet M., and Gauer F. (2003) Contrary to other non-photic cues, acute melatonin injection does not induce immediate changes of clock gene mRNA expression in the rat suprachiasmatic nuclei. Neuroscience 120, 745–755.

    Article  PubMed  CAS  Google Scholar 

  • Preitner N., Damiola F., Lopez-Molina L., Zakany J., Duboule D., Albrecht U., and Schibler U. (2002) The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110, 251–260.

    Article  PubMed  CAS  Google Scholar 

  • Prosser R. A. (2001) Glutamate blocks serotonergic phase advances of the mammalian circadian pacemaker through AMPA and NMDA receptors. J. Neurosci. 21, 7815–7822.

    PubMed  CAS  Google Scholar 

  • Prosser R. A. (1999) Melatonin inhibits in vitro serotonergic phase shifts of the suprachiasmatic circadian clock. Brain Res. 818, 408–413.

    Article  PubMed  CAS  Google Scholar 

  • Prosser R. A., Dean R. R., Edgar D. M., Heller H. C., and Miller J. D. (1993) Serotonin and the mammalian circadian system: I. In vitro phase shifts by serotonergic agonists and antagonists. J. Biol. Rhythms 8, 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Redman J., Armstrong S., and Ng K. T. (1983) Free-running activity rhythms in the rat: entrainment by melatonin. Science 219, 1089–1091.

    Article  PubMed  CAS  Google Scholar 

  • Reebs S. G. and Mrosovsky N. (1989) Effects of induced wheel running on the circadian activity rhythms of Syrian hamsters: entrainment and phase response curve. J. Biol. Rhythms 4, 39–48.

    Article  PubMed  CAS  Google Scholar 

  • Reppert S. M. and Weaver D. R. (2002) Coordination of circadan timing in mammals. Nature 418, 935–941.

    Article  PubMed  CAS  Google Scholar 

  • Rusak B. and Yu G. D. (1993) Regulation of melatonin-sensitivity and firing-rate rhythms of hamster suprachiasmatic nucleus neurons: pinealectomy effects. Brain Res. 602, 200–204.

    Article  PubMed  CAS  Google Scholar 

  • Schuhler S., Pitrosky B., Kirsch R., and Pevet P. (2002) Entrainment of locomotor activity rhythm in pinealectomized adult Syrian hamsters by daily melatonin infusion. Behav. Brain Res. 133, 343–350.

    Article  PubMed  CAS  Google Scholar 

  • Schuhler S., Saboureau M., Pitrosky B., and Pevet P. (1998) In Syrian hamsters, 5-HT fibres within the suprachiasmatic nuclei are necessary for the expression of 8-OH-DPAT induced phase-advance of locomotor activity rhythm. Neurosci. Lett. 256, 33–36.

    Article  PubMed  CAS  Google Scholar 

  • Shibata S., Tsuneyoshi A., Hamada T., Tominaga K., and Watanabe S. (1992) Phase-resetting effect of 8-OH-DPAT, a serotonin-1A receptor agonist, on the circadian rhythm of firing rate in the rat suprachiasmatic nuclei in vitro. Brain Res. 582, 353–356.

    Article  PubMed  CAS  Google Scholar 

  • Simonneaux V. and Ribelayga, C. (2003) Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol. Rev. 55, 325–395.

    Article  PubMed  CAS  Google Scholar 

  • Sinclair S. V. and Mistlberger R. E. (1997) Scheduled activity reorganizes circadian phase of Syrian hamsters under full and skeleton photoperiods. Behav. Brain Res. 87, 127–137.

    Article  PubMed  CAS  Google Scholar 

  • Slotten H. A., Krekling S., Sicard B., and Pevet P. (2002) Daily infusion of melatonin entrains circadian activity rhythms in the diurnal rodent Arvicanthis ansorgei. Behav. Brain Res. 133, 11–19.

    Article  PubMed  CAS  Google Scholar 

  • Slotten H. A., Pitrosky B., and Pevet P. (1999) Influence of the mode of daily melatonin administration on entrainment of rat circadian rhythms. J. Biol. Rhythms 14, 347–353.

    Article  PubMed  CAS  Google Scholar 

  • Tominaga K., Shibata S., Ueki S., and Watanabe S. (1992) Effects of 5-HT1A receptor agonists on the circadian rhythm of wheel-running activity in hamsters. Eur. J. Pharmacol. 214, 79–84.

    Article  PubMed  CAS  Google Scholar 

  • Van den Top M., Buijs R. M., Ruijter J. M., Delagrange P., Spanswick D., and Hermes M. L. (2001) Melatonin generates an outward potassium current in rat suprachiasmatic nucleus neurones in vitro independent of their circadian rhythm. Neuroscience 107, 99–108.

    Article  PubMed  Google Scholar 

  • Van Reeth O. and Turek F. W. (1989) Stimulated activity mediates phase shifts in the hamster circadian clock induced by dark pulses or benzodiazepines. Nature 339, 49–51.

    Article  PubMed  CAS  Google Scholar 

  • Warren W.S., Hodges D. B., and Cassone V.M. (1993) Pinealectomized rats entrain and phase-shift to melatonin injections in a dose-dependent manner. J. Biol. Rhythms 8, 233–245.

    Article  PubMed  CAS  Google Scholar 

  • Wilsbacher L. D., Yamazaki S., Herzog E. D., Song E. J., Radcliffe L. A., Abe M., et al. (2002) Photic and circadian expression of luciferase in mPeriod1-luc transgenic mice in vivo. Proc. Natl. Acad. Sci. U. S. A. 99, 489–494.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto S., Shigeyoshi Y., Ishida Y., Fukuyama T., Yamaguchi S., Yagita K., et al. (2001) Expression of the Per1 gene in the hamster: brain atlas and circadian characteristics in the suprachiasmatic nucleus. J. Comp. Neurol. 19, 518–532.

    Article  Google Scholar 

  • Yan L., Takekida S., Shigeyoshi Y., and Okamura H. (1999) Per1 and Per2 gene expression in the rat suprachiasmatic nucleus: circadian profile and the compartment-specific response to light. Neuroscience 94, 141–150.

    Article  PubMed  CAS  Google Scholar 

  • Yannielli P. C., McKinley B. J., and Harrington M. E. (2002) Is novel wheel inhibition of Per1 and Per2 expression linked to phase shift occurrence? Neuroscience 112, 677–685.

    Article  PubMed  CAS  Google Scholar 

  • Yasuo S., Yoshimura T., Bartell P.A., Iigo M., Makino E., Okabayashi N., and Ebihara S. (2002) Effect of melatonin administration on qPer2, qPer3 and qClock gene expression in the suprachiamatic nucleus of Japanase quail. Eur. J. Neurosci. 16, 1541–1546.

    Article  PubMed  Google Scholar 

  • Yokota S. I., Horikawa K., Akiyama M., Moriya T., Ebihara S., Komuro G., et al. (2000) Inhibitory action of brotizolam on circadian and light-induced Per1 and Per2 expression in the hamster suprachiasmatic nucleus. Br. J. Pharmacol. 131, 1739–1747.

    Article  PubMed  CAS  Google Scholar 

  • Youngstrom T. G., Weiss M. L., and Nunez A. A. (1991) Retinofugal projections to the hypothalamus, anterior thalamus and basal forebrain in hamsters. Brain Res. Bull. 26, 403–411.

    Article  PubMed  CAS  Google Scholar 

  • Yu G. D., Rusak B., and Piggins H. D. (1993) Regulation of melatonin-sensitivity and firing-rate rhythms of hamster suprachiasmatic nucleus neurons: constant light effects. Brain Res. 602, 191–199.

    Article  PubMed  CAS  Google Scholar 

  • Zylka M. J., Shearman L. P., Weaver D. R., and Reppert S. M. (1998) Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron 20, 1103–1110.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Challet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caldelas, I., Challet, E., Saboureau, M. et al. Light and melatonin inhibit in vivo serotonergic phase advances without altering serotonergic-induced decrease of Per expression in the hamster suprachiasmatic nucleus. J Mol Neurosci 25, 53–63 (2005). https://doi.org/10.1385/JMN:25:1:053

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:25:1:053

Index Entries

Navigation