Skip to main content
Log in

Genetic and pharmacological suppression of polyglutamine-dependent neuronal dysfunction in Caenorhabditis elegans

  • Review Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The identification of disease genes for several neurodegenerative illnesses has allowed for the development of disease models in experimental organisms. We discuss our approach to studying Huntington’s disease, the best characterized of the polyglutamine (polyQ) expansion disorders. We have developed a system in Caenorhabditis elegans to study the effects of (polyQ)-dependent neuronal dysfunction at the resolution of two neurons in screening for genetic and pharmacological suppression. Our data suggest that C. elegans might be instructive in searching for targets and active compounds against polyglutamine neuronal toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bence N. F., Sampat R. M., and Kopito R. R. (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1552–1555.

    Article  PubMed  CAS  Google Scholar 

  • Boutell J. M., Thomas P., Neal J. W., Weston V. J., Duce J., Harper P. S., and Jones A. L. (1999) Aberrant interactions of transcriptional repressor proteins with the Huntington’s disease gene product, huntingtin. Hum. Mol. Genet. 8, 1647–1655.

    Article  PubMed  CAS  Google Scholar 

  • Boutell J. M., Wood J. D., Harper P. S., and Jones A. L. (1998): Huntingtin interacts with cystathionine betasynthase. Hum. Mol. Genet. 7, 371–378.

    Article  PubMed  CAS  Google Scholar 

  • Burke J. R., Enghild J. J., Martin M. E., Jou Y. S., Myers R. M., Roses A. D., et al. (1996) Huntingtin and DRPLA proteins selectively interact with the enzyme GAPDH. Nat. Med. 2, 347–350.

    Article  PubMed  CAS  Google Scholar 

  • Chalfie M. and Au M. (1989) Genetic control of differentiation of the Caenohabditis elegans touch receptor neurons. Science 243, 1027–1033.

    Article  PubMed  CAS  Google Scholar 

  • Colomer V., Engelender S., Sharp A. H., Duan K., Cooper J. K., Lanahan A., et al. (1997) Huntingtin-associated protein 1 (HAP1) binds to a Trio-like polypeptide, with a rac1 guanine nucleotide exchange factor domain. Hum. Mol. Genet. 6, 1519–1525.

    Article  PubMed  CAS  Google Scholar 

  • Davies S. W., Turmaine M., Cozens B. A., DiFiglia M., Sharp A. H., Ross C. A., et al. (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90, 537–548.

    Article  PubMed  CAS  Google Scholar 

  • DiFiglia M., Sapp E., Chase K. O., Davies S. W., Bates G. P., Vonsattel J. P., and Aronin N. (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990–1993.

    Article  PubMed  CAS  Google Scholar 

  • DiFiglia M., Sapp E., Chase K., Schwarz C., Meloni A., Young C., et al. (1995) Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 14, 1075–1081.

    Article  PubMed  CAS  Google Scholar 

  • Dragatsis I., Levine M. S., and Zeitlin S. (2000) Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice. Nat. Genet. 26, 300–306.

    Article  PubMed  CAS  Google Scholar 

  • Driscoll M. and Gerstbrein, B. (2003) Dying for a cause: invertebrate genetics takes on human neurodegeneration. Nat. Rev. Genet. 4, 181–194.

    Article  PubMed  CAS  Google Scholar 

  • Dunah A. W., Jeong H., Griffin A., Kim Y. M., Standaert D. G., Hersch S. M., et al. (2002) Sp1 and TAFII130 transcriptional activity disrupted in early Huntington’s disease. Science 296, 2238–2243.

    Article  PubMed  CAS  Google Scholar 

  • Faber P. W., Alter J. R., MacDonald M. E. and Hart A. C. (1999) Polyglutamine-mediated dysfunction and apoptotic death of a Caerorhabditis elegans sensory neuron. Proc. Natl. Acad. Sci. USA 96, 179–184.

    Article  PubMed  CAS  Google Scholar 

  • Faber P. W., Barnes G. T., Srinidhi J., Chen J., Gusella J. F., and MacDonald M. E. (1998) Huntingtin interacts with a family of WW domain proteins. Hum. Mol. Genet. 7, 1463–1474.

    Article  PubMed  CAS  Google Scholar 

  • The Huntington Disease Collaborative Research Group. (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72, 971–983.

    Article  Google Scholar 

  • Gusella J. F. and MacDonald M. E. (1998) Huntingtin: a single bait hooks many species. Curr. Opin. Neurobiol. 8, 425–430.

    Article  PubMed  CAS  Google Scholar 

  • Harper P. S. (1992) The epidemiology of Huntington’s disease. Hum. Genet. 89, 365–376.

    Article  PubMed  CAS  Google Scholar 

  • Hattula K. and Peranen J. (2000) FIP-2, a coiled-coil protein, links Huntingtin to Rab8 and modulates cellular morphogenesis. Curr. Biol. 10, 1603–1606.

    Article  PubMed  CAS  Google Scholar 

  • Heemskerk J., Tobin A. J., and Bain L. J. (2002a) Teaching old drugs new tricks. Meeting of the Neurodegeneration Drug Screening Consortium, 7–8 April 2002, Washington, D.C. Trends Neurosci. 25, 494–496.

    Article  PubMed  Google Scholar 

  • Heemskerk J., Tobin A. J. and Ravina B. (2002b) From chemical to drug: neurodegeneration drug screening and the ethics of clinical trials. Nat. Neurosci. 5(Suppl.), 1027–1029.

    Article  PubMed  CAS  Google Scholar 

  • Holbert S., Dedeoglu A., Humbert S., Saudou F., Ferrante R. J., and Neri C. (2003) Cdc42-interacting protein 4 binds to huntingtin: neuropathologic and biological evidence for a role in Huntington’s disease. Proc. Natl. Acad. Sci. USA 100, 2712–2717.

    Article  PubMed  CAS  Google Scholar 

  • Holbert S., Denghien I., Kiechle T., Rosenblatt A., Wellington C., Hayden M. R, et al. (2001) The Gln-Ala repeat transcriptional activator CA150 interacts with huntingtin: neuropathologic and genetic evidence for a role in Huntington’s disease pathogenesis. Proc. Natl. Acad. Sci. USA 98, 1811–1816.

    Article  PubMed  CAS  Google Scholar 

  • Kalchman M. A., Koide H. B., McCutcheon K., Graham R. K., Nichol K., Nishiyama K., et al. (1997) HIP1, a human homologue of S. cerevisiae Sla2p, interacts with membrane-associated huntingtin in the brain. Nat. Genet. 16, 44–53.

    Article  PubMed  CAS  Google Scholar 

  • Kazemi-Esfarjani P. and Benzer S. (2000) Genetic suppression of polyglutamine toxicity in Drosophila. Science 287, 1837–1840.

    Article  PubMed  CAS  Google Scholar 

  • Kegel K. B., Meloni A. R., Yi Y., Kim Y. J., Doyle E., Cuiffo B. G., et al. (2002) Huntingtin is present in the nucleus, interacts with the transcriptional corepressor C-terminal binding protein, and represses transcription. J. Biol. Chem. 277, 7466–7476.

    Article  PubMed  CAS  Google Scholar 

  • Leavitt B. R., Guttman J. A., Hodgson J. G., Kimel G. H., Singaraja R., Vogl A. W., and Hayden M. R. (2001) Wildtype huntingtin reduces the cellular toxicity of mutant huntingtin in vivo. Am. J. Hum. Genet. 68, 313–324.

    Article  PubMed  CAS  Google Scholar 

  • Li S. H., Cheng A. L., Zhou H., Lam S., Rao M., Li H., and Li X. J. (2002) Interaction of huntington disease protein with transcriptional activator sp1. Mol. Cell. Biol. 22, 1277–1287.

    Article  PubMed  CAS  Google Scholar 

  • Liu Y. F., Deth R. C., and Devys D. (1997) SH3 domain-dependent association of huntingtin with epidermal growth factor receptor signaling complexes. J. Biol. Chem. 272, 8121–8124.

    Article  PubMed  CAS  Google Scholar 

  • Liu Y. F., Dorow D., and Marshall J. (2000) Activation of MLK2-mediated signaling cascades by polyglutamine-expanded huntingtin. J. Biol. Chem. 275, 19035–19040.

    Article  PubMed  CAS  Google Scholar 

  • Luthi-Carter R., Hanson S. A., Strand A. D., Bergstrom D. A., Chun W., Peters N. L., et al. (2002) Dysregulation of gene expression in the R6/2 model of polyglutamine disease: parallel changes in muscle and brain. Hum. Mol. Genet. 11, 1911–1926.

    Article  PubMed  CAS  Google Scholar 

  • Luthi-Carter R., Strand A., Peters N. L., Solano S. M., Hollingsworth Z. R., Menon A. S., et al. (2000) Decreased expression of striatal signaling genes in a mouse model of Huntington’s disease. Hum. Mol. Genet. 9, 1259–1271.

    Article  PubMed  CAS  Google Scholar 

  • Marsh J. L., Walker H., Theisen H., Zhu Y. Z., Fielder T., Purcell J., and Thompson L. M. (2000) Expanded polyglutamine peptides alone are intrinsically cytotoxic and cause neurodegeneration in Drosophila. Hum. Mol. Genet. 9, 13–25.

    Article  PubMed  CAS  Google Scholar 

  • McCampbell A., Taylor J. P., Taye A. A., Robitschek J., Li M., Walcott J., et al. (2000) CREB-binding protein sequestration by expanded polyglutamine. Hum. Mol. Genet. 9, 2197–2202.

    Article  PubMed  CAS  Google Scholar 

  • Mitani S., Du H., Hall D. H., Driscoll M., and Chalfie M. (1993) Combinatorial control of touch receptor neuron expression in Caenorhabditis elegans. Development 119, 773–783.

    PubMed  CAS  Google Scholar 

  • Modregger J., DiProspero N. A., Charles V., Tagle D. A., and Plomann M. (2002) PACSIN 1 interacts with huntingtin and is absent from synaptic varicosities in presymptomatic huntington’s disease brains. Hum. Mol. Genet. 11, 2547–2558.

    Article  PubMed  CAS  Google Scholar 

  • Nasir J., Floresco S. B., O’Kusky J. R., Diewert V. M., Richman J. M., Zeisler J., et al. (1995) Targeted disruption of the Huntington’s disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell 81, 811–823.

    Article  PubMed  CAS  Google Scholar 

  • Neri C. (2001) New light on polyglutamine neurodegenerative disorders: interference with transcription. Trends Mol. Med. 7, 283–284.

    Article  PubMed  CAS  Google Scholar 

  • Nucifora F. C., Jr., Sasaki M., Peters M. F., Huang H., Cooper J. K., Yamada M., et al. (2001) Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science 291, 2423–2428.

    Article  PubMed  CAS  Google Scholar 

  • Parker J. A., Connolly J. B., Wellington C., Hayden M., Dausset J., and Neri C. (2001) Expanded polyglutamines in Caenorhabditis elegans cause axonal abnormalities and severe dysfunction of PLM mechanosensory neurons without cell death. Proc. Natl. Acad. Sci. USA 98, 13318–13323.

    Article  PubMed  CAS  Google Scholar 

  • Perutz M. F. and Windle A. H. (2001) Cause of neural death in neurodegenerative diseases attributable to expansion of glutamine repeats. Nature 412, 143–144.

    Article  PubMed  CAS  Google Scholar 

  • Petersen A., Mani K., and Brundin P. (1999) Recent advances on the pathogenesis of Huntington’s disease. Exp. Neurol. 157, 1–18.

    Article  PubMed  CAS  Google Scholar 

  • Ross C. A., Wood J. D., Schilling G., Peters M. F., Nucifora F. C., Jr., Cooper J. K., et al. (1999) Polyglutamine pathogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354, 1005–1011.

    Article  PubMed  CAS  Google Scholar 

  • Rubinsztein D. C. (2002) Lessons from animal models of Huntington’s disease. Trends Genet. 18, 202–209.

    Article  PubMed  CAS  Google Scholar 

  • Satyal S. H., Schmidt E., Kitagawa K., Sondheimer N., Lindquist S., Kramer J. M., and Morimoto R. I. (2000) Polyglutamine aggregates alter protein folding homeostasis in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 97, 5750–5755.

    Article  PubMed  CAS  Google Scholar 

  • Saudou F., Finkbeiner S., Devys D., and Greenberg M. E. (1998) Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95, 55–66.

    Article  PubMed  CAS  Google Scholar 

  • Singaraja R. R., Hadano S., Metzler M., Givan S., Wellington C. L., Warby S., et al. (2002) HIP14, a novel ankyrin domain-containing protein, links huntingtin to intracellular trafficking and endocytosis. Hum. Mol. Genet. 11, 2815–2828.

    Article  PubMed  CAS  Google Scholar 

  • Sisodia S. S. (1998) Nuclear inclusions in glutamine repeat disorders: are they pernicious, coincidental, or beneficial? Cell 95, 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Sittler A., Walter S., Wedemeyer N., Hasenbank R., Scherzinger E., Eickhoff H., et al. (1998) SH3GL3 associates with the Huntingtin exon 1 protein and promotes the formation of polygln-containing protein aggregates. Mol. Cell 2, 427–436.

    Article  PubMed  CAS  Google Scholar 

  • Steffan J. S., Kazantsev A., Spasic-Boskovic O., Greenwald M., Zhu Y. Z., Gohler H., et al. (2000) The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc. Natl. Acad. Sci. USA 97, 6763–6768.

    Article  PubMed  CAS  Google Scholar 

  • Sulston J. E., Schierenberg E., White J. G., and Thomson J. N. (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119.

    Article  PubMed  CAS  Google Scholar 

  • Sun Y., Savanenin A., Reddy P. H., and Liu Y. F. (2001) Polyglutamine-expanded huntingtin promotes sensitization of N-methyl-D-aspartate receptors via post-synaptic density 95. J. Biol. Chem. 276, 24713–24718.

    Article  PubMed  CAS  Google Scholar 

  • Trottier Y., Lutz Y., Stevanin G., Imbert G., Devys D., Cancel G., et al. (1995) Polyglutamine expansion as a pathological epitope in Huntington’s disease and four dominant cerebellar ataxias. Nature 378, 403–406.

    Article  PubMed  CAS  Google Scholar 

  • Velier J., Kim M., Schwarz C., Kim T. W., Sapp E., Chase K., et al. (1998) Wild-type and mutant huntingtins function in vesicle trafficking in the secretory and endocytic pathways. Exp. Neurol. 152, 34–40.

    Article  PubMed  CAS  Google Scholar 

  • Waelter S., Boeddrich A., Lurz R., Scherzinger E., Lueder G., Lehrach H., and Wanker E. E. (2001) Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation. Mol. Biol. Cell 12, 1393–1407.

    PubMed  CAS  Google Scholar 

  • Wanker E. E., Rovira C., Scherzinger E., Hasenbank R., Walter S., Tait D., et al. (1997) HIP-I: a huntingtin interacting protein isolated by the yeast two-hybrid system. Hum. Mol. Genet. i 6, 487–495.

    Article  CAS  Google Scholar 

  • Warrick J. M., Paulson H. L., Gray-Board G. L., Bui Q. T., Fischbeck K. H., Pittman R. N., and Bonini N. M. (1998) Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell 93, 939–949.

    Article  PubMed  CAS  Google Scholar 

  • Way J. C. and Chalfie M. (1988) mec-3, a hemeoboxcontaining gene that specifies differentiation of the touch receptor neurons in C. elegans. Cell 54, 5–16.

    Article  PubMed  CAS  Google Scholar 

  • Wellington C. L. and Hayden M. R. (2000) Caspases and neurodegeneration: on the cutting edge of new therapeutic approaches. Clin. Genet. 57, 1–10.

    Article  PubMed  CAS  Google Scholar 

  • White J. G., Southgate E., Thomson J. N., and Brenner S. (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 314, 1–340.

    Article  Google Scholar 

  • White J. K., Auerbach W., Duyao M. P., Vonsattel J. P., Gusella J. F., Joyner A. L., and MacDonald M. E. (1997) Huntingtin is required for neurogenesis and is not impaired by the Huntington’s disease CAG expansion. Nat. Genet. 17, 404–410.

    Article  PubMed  CAS  Google Scholar 

  • Wood J. D., MacMillan J. C., Harper P. S., Lowenstein P. R., and Jones A. L. (1996) Partial characterisation of murine huntingtin and apparent variations in the subcellular localisation of huntingtin in human, mouse and rat brain. Hum. Mol. Genet. 5, 481–487.

    Article  PubMed  CAS  Google Scholar 

  • Wyttenbach A., Swartz J., Kita H., Thykjaer T., Carmichael J., Bradley J., et al. (2001) Polyglutamine expansions cause decreased CRE-mediated transcription and early gene expression changes prior to cell death in an inducible cell model of Huntington’s disease. Hum. Mol. Genet. 10, 1829–1845.

    Article  PubMed  CAS  Google Scholar 

  • Zuccato C., Ciammola A., Rigamonti D., Leavitt B. R., Goffredo D., Conti L., et al. (2001) Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 293, 493–498.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Néri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parker, J.A., Holbert, S., Lambert, E. et al. Genetic and pharmacological suppression of polyglutamine-dependent neuronal dysfunction in Caenorhabditis elegans . J Mol Neurosci 23, 61–67 (2004). https://doi.org/10.1385/JMN:23:1-2:061

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:23:1-2:061

Index Entries

Navigation