Skip to main content
Log in

Is there structural specificity in the reversible protein aggregates that are stored in secretory granules?

  • Peptide Secretion
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

There are several steps that must occur for secretory granules to form: (1) Secretory proteins that make up the dense cores of the granules must be concentrated; (2) membrane proteins necessary for granule function must accumulate in the correct location; and (3) inappropriate membrane proteins and excess membrane must be removed. Reversible aggregation of secretory granule proteins provides a mechanism for concentrating and sorting these proteins. There is specificity in the way secretory granule proteins are treated in cells that make granules. The specificity has been shown in some cases to occur after the aggregation process, so that granules containing different aggregates function differently. An explanation could be that a property of the aggregate, such as a surface motif, might influence the accumulation of membrane proteins necessary for granule function. Such a conclusion implies that the aggregates are not amorphous but have structure. Use of NMR spectroscopy to investigate changes in the environment of amino acid residues in secretory granule proteins as they form oligomers by using 15N relaxation times might provide a means to determine which residues are specifically involved in aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan, B. B. and Balch, W. E. (1999) Protein sorting by directed maturation of Golgi compartments. Science 285, 63–66.

    Article  PubMed  CAS  Google Scholar 

  • Arvan, P. and Castle, D. (1998) Sorting and storage during secretory granule biogenesis: looking backward and looking forward. Biochem. J. 332(Pt. 3), 593–610.

    PubMed  CAS  Google Scholar 

  • Baertschi, A. J., Monnier, D., Schmidt, U., Levitan, E. S., Fakan, S., and Roatti, A. (2001) Acid prohormone sequence determines size, shape, and docking of secretory vesicles in atrial myocytes. Circ. Res. 89, E23-E29.

    PubMed  CAS  Google Scholar 

  • Bannykh, S. I. and Balch, W. E. (1997) Membrane dynamics at the end oplasmic reticulum-Golgi interface. J. Cell Biol. 138, 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Bernado, P., Akerud, T., de la Torre, J. G., Akke, M., and Pons, M. (2003) Combined use of NMR relaxation measurements and hydrodynamic calculations to study protein association. Evidence for tetramers of low molecular weight protein tyrosine phosphatase in solution. J. Am. Chem. Soc. 125, 916–923.

    Article  PubMed  CAS  Google Scholar 

  • Canaff, L., Brechler, V., Reudelhuber, T. L., and Thibault, G. (1996) Secretory granule targeting of atrial natriuretic peptide correlates with its calcium-mediated aggregation. Proc. Natl. Acad. Sci. USA 93, 9483–9487.

    Article  PubMed  CAS  Google Scholar 

  • Castle, A. M., Huang, A. Y., and Castle, J. D. (1997) Passive sorting in maturing granules of AtT-20 cells: the entry and exit of salivary amylase and proline-rich protein. J. Cell Biol. 138, 45–54.

    Article  PubMed  CAS  Google Scholar 

  • Dannies, P. S. (1999) Protein hormone storage in secretory granules: mechanisms for concentration and sorting. Endocr. Rev. 20, 3–21.

    Article  PubMed  CAS  Google Scholar 

  • Deladoey, J., Stocker, P., and Mullis, P. E. (2001) Autosomal dominant GH deficiency due to an Arg183His GH-1 gene mutation: clinical and molecular evidence of impaired regulated GH secretion. J. Clin. Endocrinol. Metab. 86, 3941–3947.

    Article  PubMed  CAS  Google Scholar 

  • Farquhar, M. G., Reid, J. J., and Daniell, L. W. (1978) Intracellular transport and packaging of prolactin: a quantitative electron microscope autoradiographic study of mammotrophs dissociated from rat pituitaries. Endocrinology 102, 296–311.

    PubMed  CAS  Google Scholar 

  • Gerdes, H. H. and Glombik, M. M. (2000) Signal-mediated sorting of chromogranins to secretory granules. Adv. Exp. Med. Biol. 482, 41–54.

    Article  PubMed  CAS  Google Scholar 

  • Giannattasio, G., Zanini, A., and Meldolesi, J. (1975) Molecular organization of rat prolactin granules. I. In vitro stability of intact and “membraneless” granules. J. Cell Biol. 64, 246–251.

    Article  PubMed  CAS  Google Scholar 

  • Ishima, R. and Torchia, D. A. (2000) Protein dynamics from NMR. Nat. Struct. Biol. 7, 740–743.

    Article  PubMed  CAS  Google Scholar 

  • Jahn, R. and Sudhof, T. C. (1999) Membrane fusion and exocytosis. Annu. Rev. Biochem. 68, 863–911.

    Article  PubMed  CAS  Google Scholar 

  • Kasimova, M. R., Kristensen, S. M., Howe, P. W., Christensen, T., Matthiesen F., Petersen, J., et al. (2002) NMR studies of the backbone flexibility and structure of human growth hormone: a comparison of high and low ph conformations. J. Mol. Biol. 318, 679–695.

    Article  PubMed  CAS  Google Scholar 

  • Kay, L. E. (1998) Protein dynamics from NMR. Biochem. Cell Biol. 76, 145–152.

    Article  PubMed  CAS  Google Scholar 

  • Keeler, C., Dannies, P. S., and Hodsdon, M. E. (2003) The tertiary structure and backbone dynamics of human prolactin. J. Mol. Biol. 328, 1105–1121.

    Article  PubMed  CAS  Google Scholar 

  • Lee, M. S., Zhu, Y. L., Chang, J. E., and Dannies, P. S. (2001) Acquisition of Lubrol insolubility, a common step for growth hormone and prolactin in the secretory pathway of neuroendocrine cells. J. Biol. Chem. 276, 715–721.

    Article  PubMed  CAS  Google Scholar 

  • Marx, R., El Meskini, R., Johns, D. C., and Mains, R. E. (1999) Differences in the ways sympathetic neurons and endocrine cells process, store, and secrete exogenous neuropeptides and peptide-processing enzymes. J. Neurosci. 19, 8300–8311.

    PubMed  CAS  Google Scholar 

  • Michael, J., Carroll, R., Swift, H. H., and Steiner, D. F. (1987) Studies on the molecular organization of rat insulin secretory granules. J. Biol. Chem. 262, 16531–16535.

    PubMed  CAS  Google Scholar 

  • Mironov, A. A., Beznoussenko, G. V., Nicoziani, P., Martella, O., Trucco, A., Kweon, H. S., et al. (2001) Small cargo proteins and large aggregates can traverse the Golgi by a common mechanism without leaving the lumen of cisternae. J. Cell Biol. 155, 1225–1238.

    Article  PubMed  CAS  Google Scholar 

  • Molinete, M., Irminger, J. C., Tooze, S. A., and Halban, P. A. (2000) Trafficking/sorting and granule biogenesis in the beta-cell. Semin. Cell Dev. Biol. 11, 243–251.

    Article  PubMed  CAS  Google Scholar 

  • Orci, L., Ravazzola, M., Amherdt, M., Madsen, O., Vassalli, J. D., and Perrelet, A. (1985) Direct identification of prohormone conversion site in insulin-secreting cells. Cell 42, 671–681.

    Article  PubMed  CAS  Google Scholar 

  • Orci, L., Ravazzola, M., Storch, M. J., Anderson, R. G., Vassalli, J. D., and Perrelet, A. (1987) Proteolytic maturation of insulin is a post-Golgi event which occurs in acidifying clathrin-coated secretory vesicles. Cell 49, 865–868.

    Article  PubMed  CAS  Google Scholar 

  • Ort, T., Maksimova, E., Dirkx, R., Kachinsky, A. M., Berghs, S., Froehner, S. C., and Solimena, M. (2000) The receptor tyrosine phosphatase-like protein ICA512 binds the PDZ domains of beta2-syntrophin and nNOS in pancreatic beta-cells. Eur. J. Cell Biol. 79, 621–630.

    Article  PubMed  CAS  Google Scholar 

  • Rambourg, A., Clermont, Y., Chretien, M., and Olivier, L. (1992) Formation of secretory granules in the Golgi apparatus of prolactin cells in the rat pituitary gland: a stereoscopic study. Anat. Rec. 232, 169–179.

    Article  PubMed  CAS  Google Scholar 

  • Reaves, B. J., Van Itallie, C. M., Moore, H. H., and Dannies, P. S. (1990) Prolactin and insulin are targeted to the regulated pathway in GH4C1 cells, but their storage is differentially regulated. Mol. Endocrinol. 4, 1017–1026.

    Article  PubMed  CAS  Google Scholar 

  • Scammell, J. G., Burrage, T. G., and Dannies, P. S. (1986) Hormonal induction of secretory granules in a pituitary tumor cell line. Endocrinology 119, 1543–1548.

    Article  PubMed  CAS  Google Scholar 

  • Slot, J. W., Garruti, G., Martin, S., Oorschot, V., Posthuma, G., Kraegen, E. W., et al. (1997) Glucose transporter (GLUT-4) is targeted to secretory granules in rat atrial cardiomyocytes. J. Cell Biol. 137, 1243–1254.

    Article  PubMed  CAS  Google Scholar 

  • Sossin, W. S., Fisher, J. M., and Scheller, R. H. (1990a) Sorting within the regulated secretory pathway occurs in the trans-Golgi network. J. Cell Biol. 110, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Sossin, W. S., Sweet-Cordero, A., and Scheller, R. H. (1990b) Dale’s hypothesis revisited: different neuropeptides derived from a common prohormone are targeted to different processes. Proc. Natl. Acad. Sci. USA 87, 4845–4848.

    Article  PubMed  CAS  Google Scholar 

  • Tooze, S. A., Martens, G. J., and Huttner, W. B. (2001) Secretory granule biogenesis: rafting to the SNARE. Trends Cell Biol. 11, 116–122.

    Article  PubMed  CAS  Google Scholar 

  • Wajnrajch, M. P., Gertner, J. M., Mullis, P. E., Deladoey, J., Cogan, J. D., Lekhakula, S., et al. (2000) Arg183His, a new mutational “hot-spot” in the growth hormone (GH) gene causing isolated GH deficiency type II. J. Endocr. Genet. 1, 125–135.

    CAS  Google Scholar 

  • Wand, A. J. (2001) Dynamic activation of protein function: a view emerging from NMR spectroscopy. Nat. Struct. Biol. 8, 926–931.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, Y. L., Conway-Campbell, B. L., Waters, M. J., and Dannies, P. S. (2002) Prolonged retention after aggregation into secretory granules of R183H-growth hormone, a mutant that causes autosomal growth hormone deficiency type II. Endocrinology 1443, 4243–4248.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priscilla S. Dannies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keeler, C., Hodsdon, M.E. & Dannies, P.S. Is there structural specificity in the reversible protein aggregates that are stored in secretory granules?. J Mol Neurosci 22, 43–49 (2004). https://doi.org/10.1385/JMN:22:1-2:43

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:22:1-2:43

Index Entries

Navigation