Skip to main content
Log in

First evidence for helical transitions in supercoiled DNA by amyloid β peptide (1–42) and aluminum

A new insight in understanding Alzheimer’s disease

  • Alzheimer’s Research
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Previously, we evidenced a B → Z helical change in Alzheimer’s brain genomic DNA, leading to a hypothesis that Alzheimer’s disease (AD) etiological factors such as aluminum (Al), amyloid β (Aβ) peptide, and Tau might play a role in modulating DNA topology. In the present study, we investigated the interaction of Al and Aβ with DNA. Our results show that Aβ(1–42) could induce a B → ψ (Psi) conformational change in pUC 18 supercoiled DNA (scDNA), Aβ(1–16) caused an altered B-form, whereas Al induced a complex B-C-A mixed conformation. Ethidium bromide binding and agarose gel electrophoresis studies revealed that Al uncoiled the DNA to a fully relaxed form, whereas Aβ(1–42) and Aβ(1–16) effected a partial uncoiling and also showed differential sensitivity toward chloroquine-induced topoisomer separation. Our findings show for the first time that Aβ and Al modulate both helicity and superhelicity in scDNA. A new hypothetical model explaining the potential toxicity of Aβ and Al in terms of their DNA binding properties leading to DNA conformational alteration is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anitha S., Rao K. S. J., Latha K. S., and Viswamitra M. A. (2002) First evidence to show the topological change of DNA from B-DNA to Z-DNA conformation in the hippocampus of Alzheimer’s brain. J. Neuromol. Med. 2, 287–295.

    Google Scholar 

  • Anitha S., Reuvin S., Rao K. S. J., Latha K. S., and Viswamitra M. A. (2001) A link between apoptotic DNA damage and DNA topology in Alzheimer’s disease brain: a hypothesis. Alz. Rep. 4, 121–131.

    Google Scholar 

  • Balakrishnan R. Parthasarathy R., and Sulkowski E. (1998) Alzheimer’s β-amyloid peptide: affinity for metal chelators. J. Peptide Res. 51, 91–95.

    Article  CAS  Google Scholar 

  • Bauer W. R. Crick F. H. C., and White H. (1980) Supercoiled DNA. Sci. Am. 16, 243–245.

    Google Scholar 

  • Braak H. and Braak E. (1991) Neuropathological stageing of Alzheimer’s-related changes. Acta Neuropathol. 82, 239–259.

    Article  PubMed  CAS  Google Scholar 

  • Braak H. Braak E., Bohl J., and Reintjes R. (1996) Age, neurofibrillary changes, A beta-amyloid and the onset of Alzheimer’s disease. Neurosci. Lett. 210, 87–90.

    Article  PubMed  CAS  Google Scholar 

  • Champion C. S., Kumar D., Rajan M. T., Rao K. S. J., and Viswamitra M. A. (1998) Interaction of Co, Mn, Mg, and Al with d(GCCCATGGC) and d(CCGGGCCCGG): a spectroscopic study. Cell. Mol. Life Sci. 54, 488–496.

    Article  CAS  Google Scholar 

  • Clements A., Allsop D., Walsh D. M., and Williams C. H. (1996) Aggregation and metal-binding properties of mutant forms of the amyloid beta peptide of Alzheimer’s disease. J. Neurochem. 66, 740–747.

    Article  PubMed  CAS  Google Scholar 

  • Crapper D. R., Quittkat S., Krisnan S. S., Dalton A. J., and DeBoni U. (1980) Intranuclear aluminum content in Alzheimer’s disease, dialysis encephalopathy, and experimental aluminum encephalopathy. Acta Neuropathol. 50, 19–24.

    Article  PubMed  CAS  Google Scholar 

  • Finneagan M. M., Retigg S. J., and Orvig C. (1986) A neutral water soluble aluminum complex of neurological interest. J. Am. Chem. Soc. 108, 5033–5035.

    Article  Google Scholar 

  • Gouras G. K., Tsai J., Naslund J., Vincent B., Edgar M., Checher F., et al. (2000) Intraneuronal Aβ 42 accumulation in human brain. Am. J. Pathol. 156, 15–20.

    PubMed  CAS  Google Scholar 

  • Grant S. M., Ducatenzeiler A., Szyl M., and Cuello A. C. (2000) Aβ immunoreactive material is present in all intracellular compartments in transfected neuronally differentiated, P19 expressing the human amyloid β-protein precursor. J. Alzheimer’s Dis. 2, 207–222.

    CAS  Google Scholar 

  • Gray D. M., Taylor T. N., and Lang D. (1978) Dehydrated circular DNA: circular dichroism of molecules in ethanol solutions. Biopolymers 17, 1–45.

    Article  Google Scholar 

  • Hanlon S., Brudno S., Wu T. T., and Wolf B. (1975) Structural transitions of deoxyribonucleic acid in aqueous electrolyte solutions: reference spectra of conformational limits. Biochemistry 14, 1648–1660.

    Article  PubMed  CAS  Google Scholar 

  • Huang H. M., Ou H. C., and Hsieh S. J. (2000) Antioxidants prevent amyloid peptide-induced apoptosis and alteration of calcium homeostasis in cultured cortical neurons. Life Sci. 66, 1879–1892.

    Article  PubMed  CAS  Google Scholar 

  • Iqbal K., Alonso A. C., Gong C. X., Khatoon S., Singh T. J., and Grundke-Iqbal I. (1994) Mechanism of neurofibrillary degeneration in Alzheimer’s disease. Mol. Neurobiol. 9, 119–123.

    PubMed  CAS  Google Scholar 

  • Kang J., Lemaire H. G., Unterbeck A., Salbaum J. M., Masters C. L., Grzeschik K. H., et al. (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325, 733–736.

    Article  PubMed  CAS  Google Scholar 

  • Karlik S. J., Eichhorn G. L., Lewis P. N., and Crapper D. R. (1980) Interaction of aluminum species with deoxyribonucleic acid. Biochemistry 19, 5991–6001.

    Article  PubMed  CAS  Google Scholar 

  • Lyras L., Cairns N. J., Jenner A., Jenner P., and Halliwell B. (1997) An assessment of oxidative damage to proteins, lipids, and DNA in brain from patients with Alzheimer’s disease. J. Neurochem. 68, 2061–2069.

    Article  PubMed  CAS  Google Scholar 

  • Maestre M. F., and Wang J. C. (1971) Circular dichroism of superhelical DNA. Biopolymers 10, 1021.

    Article  PubMed  CAS  Google Scholar 

  • Martin R. B. (1991) Aluminum in biological systems, in Aluminum in Chemistry, Biology, and Medicine, Nicolini, P., Zatta, P. F., and Corain, B. eds., Raven, New York, pp. 3–20.

    Google Scholar 

  • McKhann G., Drachman D., Folstein M., Katzman R., Price D., and Stadlan E. (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 34, 939–944.

    PubMed  CAS  Google Scholar 

  • Mirra S. S. (1997) The CERAD neuropathology protocol and consensus recommendations for the postmortem diagnosis of Alzheimer’s disease: a commentary. Neurobiol. Aging 18 (Suppl.), S91–94.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen S. A., Ravid R., Kamphorst W., and Orgensen O. S. (2003) Apoliprotein E e4 in an autopsy series of various dementing disorders. J. Alzheimer’s Dis. 5, 119–125.

    CAS  Google Scholar 

  • Perl D. P., and Brody A. R. (1980) Alzheimer’s disease: X-ray spectrometric evidence of aluminium accumulation in neuro-fibrillary tangle bearing neurons. Science 208, 297.

    Article  PubMed  CAS  Google Scholar 

  • Rajan M. T., Champion C. S., Kumar D., Vishnuvardhan D., Rao K. S. J., and Viswamitra M. A. (1996) Interaction of Co, Mn, Mg and Al with d(GCGTACGC): a spectroscopic study. Mol. Biol. Rep. 22, 47–52.

    Article  CAS  Google Scholar 

  • Rao K. S. J. and Divaker S. (1993) Spectroscopic studies of Al-DNA interactions Bull Environ. Contam. Toxicol. 50, 92–99.

    CAS  Google Scholar 

  • Rao K. S. J., Anitha S., and Latha K. S. (2000) Aluminium induced neurodegeneration in hippocampus of aged rabbits mimics Alzheimer’s disease. Alz. Rep. 3, 83–88.

    Google Scholar 

  • Rao K. S. J., Letada P., Haverstick D. M., Herman M. M., and Savory J. (1998) Modifications to the in situ TUNEL method for detection of apoptosis in paraffin-embedded tissue section. Ann. Clin. Lab. Sci. 28, 131–137.

    PubMed  CAS  Google Scholar 

  • Rao K. S. J., Rao B. S., Vishnuvardhan D., and Prasad K. V. S. (1993) Alteration in superhelical state of DNA by aluminium. Biochem. Biophys. Acta 1172, 17–20.

    PubMed  CAS  Google Scholar 

  • Ravid R. and Winblad B. (1993) Brain banking in Alzheimer’s disease: factors to match for, pitfalls and potentials, in Alzheimer’s Disease: Advances in Clinical and Basic Research, Corain, B., Iqbal, K., Nicolini, M., Winblad, B., Wisniewsky, H., and Zatta, P., eds., John Wiley and Sons, NY, pp. 213–218.

    Google Scholar 

  • Ravid R., Van Zwieten E. J., and Swaab D. F. (1992) Brain banking and the human hypothalamus—factors to match for, pitfalls and potentials. Prog. Brain Res. 93, 83–95.

    Article  PubMed  CAS  Google Scholar 

  • Ravid R., Swaab D. F., Van Zwieten E. J., and Salehi A. (1995) Controls are what makes a brain bank go round, in Neuropathological Diagnostic Criteria for Brain Banking, Biomedical and Health Research, Vol. 10, Cruz-Sanchez, F. F. Cuzner, M. L., and Ravid, R., eds., IOS Press, Amsterdam, The Netherlands, pp. 4–13.

    Google Scholar 

  • Ravid R., Swaab D. F., Kamphorst W., and Salehi A. (1998) Brain banking in aging and dementia research—the Amsterdam experience, in Progress in Alzheimer’s and Parkinson’s disease, Fisher, A., Yorshida, M., and Hanin, I., eds., Plenum Press, New York, pp. 277–286.

    Google Scholar 

  • Reich Z., Levin Z. S., Gutman S. B., Arad T., and Minsky A. (1994) Supercoiling-regulated liquid-crystalline packaging of topologically-constrained, nucleodsome-free DNA molecules. Biochemistry 33, 14177–14184.

    Article  PubMed  CAS  Google Scholar 

  • Reisberg B., Ferris S. H., Del Leon M. J., and Crook T. (1982) The global deterioration scale for assessment of primary degenerative dementia. Am. J. Psychol. 139, 1136–1139.

    CAS  Google Scholar 

  • Savory J., Rao K. S. J., Huang Y., Letada P. R., and Herman M. M. (1999) Age related changes in Bcl-2 and Bax ratio, oxidative stress, redox active iron, and apoptosis associated with aluminium induced neurodegeneration: increased susceptibility with aging, Neurotoxicology 20, 805–818.

    PubMed  CAS  Google Scholar 

  • Selkoe D. J. (1996) Amyloid beta-protein and the genetics of Alzheimer’s disease J. Biol. Chem. 271, 18295–18298.

    PubMed  CAS  Google Scholar 

  • Shin Y. A. and Eichhorn G. L. (1984) Formation of psi(+) and psi (−) DNA. Biopolymers 23, 325–335.

    Article  PubMed  CAS  Google Scholar 

  • Thomas T. J. and Thomas T. (1989) Direct evidence for the presence of left handed conformation in a supramolecular assembly of polypeptides. Nucleic Acids Res. 17, 3795–3810.

    Article  PubMed  CAS  Google Scholar 

  • Zuidam N. J., Barenholz Y., and Minsky A. (1999) Chiral DNA packaging in DNA-cationic liposome assemblies. FEBS Lett. 457, 419–422.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Jagannatha Rao.

Additional information

This paper is dedicated to the memory of the late Prof. M. A. Viswamitra, Indian Institute of Science, Bangalore, India. M. L. Hegde and S. Anitha have contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hegde, M.L., Anitha, S., Latha, K.S. et al. First evidence for helical transitions in supercoiled DNA by amyloid β peptide (1–42) and aluminum. J Mol Neurosci 22, 19–31 (2004). https://doi.org/10.1385/JMN:22:1-2:19

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:22:1-2:19

Index Entries

Navigation