Skip to main content
Log in

IL-17A-producing neutrophil-regulatory Tn lymphocytes

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The proinflammatory cytokine IL-17A, mainly produced by specialized T cells, plays an important homeostatic role in regulating neutrophil production and blood neutrophil counts. This review will assemble and discuss the evidence for this function of IL-17A-producing cells, which are collectively called neutrophil-regulatory T cells or Tn cells. IL-17A-producing lymphocytes are most abundant in the mesenteric lymph node, where they account for 0.15% of all lymphocytes. About 60% of the Tn cells are γδ T cells, about 25% NKT-like cells, and less than 15% are CD4 T cells. These latter cells are also known as T-17 or ThIL-17 cells, a subset of Tn cells that also plays an important role in autoimmune diseases. IL-17A produced by Tn cells regulates the production of G-CSF, which in turn promotes the proliferation of promyelocytes and maturation of neutrophils. This homeostatic mechanism plays an important role in normal physiology and in host defense against bacterial infections. This review is aimed at highlighting the important role of IL-17A-producing T cells at the interface between the adaptive and innate immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stark MA, Huo Y, Burcin TL, Morris MA, Olson TS, Ley K: Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity 2005; 22(3):285–294.

    Article  PubMed  CAS  Google Scholar 

  2. Demetri GD, Griffin JD: Granulocyte colony-stimulating factor and its receptor. Blood 1991; 78(11): 2791–2808.

    PubMed  CAS  Google Scholar 

  3. Nathan C. Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 2006;6(3):173–182.

    Article  PubMed  CAS  Google Scholar 

  4. Becker C, Wirtz S, Blessing M, et al: Constitutive p40 promoter activation and IL-23 production in the terminal ileum mediated by dendritic cells. J Clin Invest 2003;112(5):693–706.

    Article  PubMed  CAS  Google Scholar 

  5. Forlow SB, Schurr JR, Kolls JK, Bagby GJ, Schwarzenberger PO, Ley K: Increased granulopoiesis through interleukin-17 and granulocyte colony-stimulating factor in leukocyte adhesion molecule-deficient mice. Blood 2001;98(12):3309–3314.

    Article  PubMed  CAS  Google Scholar 

  6. Koury MJ. Erythropoietin: the story of hypoxia and a finely regulated hematopoietic hormone Exp Hematol 2005;33(11):1263–1270.

    Article  PubMed  CAS  Google Scholar 

  7. Yao Z, Painter SL, Fanslow WC, et al.: Human IL-17: a novel cytokine derived from T cells. J Immunol 1995;155(12):5483–5486.

    PubMed  CAS  Google Scholar 

  8. Li H, Chen J, Huang A, et al: Cloning and characterization of IL-17B and IL-17C, two new members of the IL-17 cytokine family. Proc Natl Acad Sci USA 2000;97(2):773–778.

    Article  PubMed  CAS  Google Scholar 

  9. Lee J, Ho WH, Maruoka M, et al: IL-17E, a novel proinflammatory ligand for the IL-17 receptor homolog IL-17Rh1. J Biol Chem 2001;276(2):1660–1664.

    Article  PubMed  CAS  Google Scholar 

  10. Starnes T, Robertson MJ, Sledge G, et al: Cutting edge: IL-17F, a novel cytokine selectively expressed in activated T cells and monocytes, regulates angiogenesis and endothelial cell cytokine production. J Immunol 2001;167(8):4137–4140

    PubMed  CAS  Google Scholar 

  11. Hurst SD, Muchamuel T, Gorman DM, et al: New IL-17 family members promote Th1 or Th2 responses in the lung: in vivo function of the novel cytokine IL-25. J Immunol 2002;169(1):443–453.

    PubMed  CAS  Google Scholar 

  12. Starnes T, Broxmeyer HE, Robertson MJ, Hromas R. Cutting edge: IL-17D, a novel member of the IL-17 family, stimulates cytokine production and inhibits hemopoiesis. J Immunol 2002;169(2):642–646.

    PubMed  CAS  Google Scholar 

  13. Fossiez F, Djossou O, Chomarat P, et al: T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med 1996;183(6):2593–2603.

    Article  PubMed  CAS  Google Scholar 

  14. Hymowitz SG, Filvaroff EH, Yin JP, et al: IL-17s adopt a cystine knot fold: structure and activity of a novel cytokine, IL-17F, and implications for receptor binding. EMBO J 2001;20(19):5332–5341.

    Article  PubMed  CAS  Google Scholar 

  15. Ziolkowska M, Koc A, Luszczykiewicz G, et al: High levels of IL-17 in rheumatoid arthritis patients: IL-15 triggers in vitro IL-17 production via cyclosporin A-sensitive mechanism. J Immunol 2000;164(5): 2832–2838.

    PubMed  CAS  Google Scholar 

  16. Fujino S, Andoh A, Bamba S, et al.: Increased expression of interleukin 17 in inflammatory bowel disease. Gut 2003;52(1):65–70.

    Article  PubMed  CAS  Google Scholar 

  17. Yao Z, Spriggs MK, Derry JM, et al.: Molecular characterization of the human interleukin (IL)-17 receptor. Cytokine 1997;9(11):794–800.

    Article  PubMed  CAS  Google Scholar 

  18. Novatchkova M, Leibbrandt A, Werzowa J, Neubuser A, Eisenhaber F. The STIR-domain superfamily in signal transduction, development and immunity. Trends Biochem Sci 2003;28(5):226–229.

    Article  PubMed  CAS  Google Scholar 

  19. Kolls JK, Linden A. Interleukin-17 family members and inflammation. Immunity 2004;21(4):467–476.

    Article  PubMed  CAS  Google Scholar 

  20. Kramer JM, Yi L, Shen F, et al: Cutting edge: evidence for ligand-independent multimerization of the IL-17 receptor. J Immunol 2006;176(2):711–715.

    PubMed  CAS  Google Scholar 

  21. Laan M, Lotvall J, Chung KF, Linden A: IL-17-induced cytokine release in human bronchial epithelial cells in vitro: role of mitogen-activated protein (MAP) kinases. Br J Pharmacol 2001;133(1):200–206.

    Article  PubMed  CAS  Google Scholar 

  22. Kehlen A, Thiele K, Riemann D, Langner J: Expression, modulation and signalling of IL-17 receptor in fibrob-last-like synoviocytes of patients with rheumatoid arthritis. Clin Exp Immunol 2002;127(3):539–546.

    Article  PubMed  CAS  Google Scholar 

  23. Lomaga MA, Yeh WC, Sarosi I, et al.: TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev 199913(8):1015–1024.

    PubMed  CAS  Google Scholar 

  24. Naito A, Azuma S, Tanaka S, et al.: Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes to Cells 1999;4(6):353–362.

    Article  PubMed  CAS  Google Scholar 

  25. Park H, Li Z, Yang XO, et al: A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005;6(11):1133–1141.

    Article  PubMed  CAS  Google Scholar 

  26. Aggarwal S, Ghiladi N, Xie MH, de Sauvage FJ, Gurney AL, Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 2003;278(3):1910–1914.

    Article  PubMed  CAS  Google Scholar 

  27. Langrish CL, Chen Y, Blumenschein WM, et al: IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp. med 2005;20(2): 233–240.

    Article  Google Scholar 

  28. Harrington LE, hatton RD, Mangan PR, et al.: Inteleukin 17-producing CD4+effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages Nat Immunol 2005;6(11):1123–1132.

    Article  PubMed  CAS  Google Scholar 

  29. Harrington LE, Hatton RD, Mangan PR, et al: Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 2005;6(11):1123–1132.

    Article  PubMed  CAS  Google Scholar 

  30. Langrish CL, McKenzie BS, Wilson NJ, de Waal MR, Kastelein RA, Cua DJ: IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol Rev 2004;202:96–105.

    Article  PubMed  CAS  Google Scholar 

  31. Ferretti S, Bonneau O, Dubois GR, Jones CE, Trifilieff A: IL-17, produced by lymphocytes and neutrophils, is necessary for lipopolysaccharide-induced airway neutrophilia: IL-15 as a possible trigger. J Immunol 2003;170(4):2106–2112.

    PubMed  CAS  Google Scholar 

  32. Happel KI, Zheng M, Young E, et al: Clutting edge: roles of toll-like receptor 4 and IL-23 in IL-17 expression in response to Klebsiella pneumoniae infection. J Immunol 2003;170(9):4432–4436.

    PubMed  CAS  Google Scholar 

  33. Monteiro JP, Benjamin A, Costa ES, Barcinski MA, Bonomo A: Normal hematopoiesis is maintained by activated bone row CD4+ T cells. Blood 2005;105(4): 1484–1491.

    Article  PubMed  CAS  Google Scholar 

  34. Schwarzenberger P, La Russa V, Miller A, et al: IL-17 stimulates granulopoiesis in mice: use of an alternate, novel gene therapy-derived method for in vivo evaluation of cytokines. J Immunol 1998;161(11): 6383–6389.

    PubMed  CAS  Google Scholar 

  35. Scharffetter-Kochanek K, Lu H, Norman K, et al: Spontaneous skin ulceration and defective T cell function in CD18 null mice. J. Exp Med 1998;188(1):119–131.

    Article  PubMed  CAS  Google Scholar 

  36. Forlow SB, White, EJ, Barlow SC et al: Severe inflammatory defect and reduced viability in CD18 and E-selectin double mutant mice. J Clin Invest 2000; 106:1457–1466.

    Article  PubMed  CAS  Google Scholar 

  37. Forlow SB, Foley PL, Ley K. Severely reduced neutrophil adhesion and impaired host defense against fecal and commensal bacteria in CD18−/−P-selectin−/−double null mice. FASEB J 2002;16(12): 1488–1496.

    Article  PubMed  CAS  Google Scholar 

  38. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B: TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006;24(2):179–189.

    Article  PubMed  CAS  Google Scholar 

  39. Oppmann B, Lesley R, Blom B, et al: Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 2000;13(5):715–725.

    Article  PubMed  CAS  Google Scholar 

  40. Liu W, Kurlander RJ: Analysis of the interrelationship between IL-12, TNF-alpha, and IFN-gamma production during murine listeriosis. Cell Immunol 1995;163(2): 260–267.

    Article  PubMed  CAS  Google Scholar 

  41. Ozenci V, Kouwenhoven M, Press R, Link H, Huang YM: IL-12 elispot assays to detect and enumerate IL-12 secreting cells. Cytokine 2000;12(8):1218–1224.

    Article  PubMed  CAS  Google Scholar 

  42. McKenzie BS, Kastelein RA, Cua DJ: Understanding the IL-23-IL-17 immune pathway. Trends Immunol 2006;27(1):17–23.

    Article  PubMed  CAS  Google Scholar 

  43. Murphy CA, Langrish CL, Chen Y, et al: Divergent pro-and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med 2003;198(12): 1951–1957.

    Article  PubMed  CAS  Google Scholar 

  44. Napolitani G, Rinaldi A, Bertoni F, Sallusto F, Lanzavecchia A: Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat Immunol 2005; 6(8):769–776.

    Article  PubMed  CAS  Google Scholar 

  45. Li J, Gran B, Zhang GX et al: Differential expression and regulation of IL-23 and IL-12 subunits and receptors in adult mouse microglia. J Neurol Sci 2003;215(1–2): 95–103.

    Article  PubMed  CAS  Google Scholar 

  46. Vanden ES, Goriely S, De WD, Goldman M, Willems F: Preferential production of the IL-12(p40)/IL-23(p19) heterodimer by dendritic cells from human newborns. Eur J Immunol 2006;36(1):21–26.

    Article  CAS  Google Scholar 

  47. Kidoya H, Umemura M, Kawabe T et al: Fas ligand induces cell-autonomous IL-23 production in dendritic cells, a mechanism for Fas ligand-induced IL-17 production. J Immunol 2005;175(12):8024–8031.

    PubMed  CAS  Google Scholar 

  48. Wiekowski MT, Leach MW, Evans EW, et al: Ubiquitous transgenic expression of the IL-23 subunit p19 induces multiorgan inflammation, runting, infertility, and premature death. J Immunol 2001;166(12):7563–7570.

    PubMed  CAS  Google Scholar 

  49. Parham C, Chirica M, Timans J et al: A receptor for the heterodimeric cytokine IL-23 is composed of IL-12R{beta} 1 and a novel cytokine receptor subunit, IL-23R. J Immunol 2002;168(11):5699–5708.

    PubMed  CAS  Google Scholar 

  50. Ziolkowska M, Koc A, Luszczykiewicz G, et al: High levels of IL-17 in rheumatoid arthritis patients: IL-15 triggers in vitro IL-17 production via cyclosporin A-sensitive mechanism. J Immunol 2000;164(5):2832–2838.

    PubMed  CAS  Google Scholar 

  51. Ferretti S, Bonneau O, Dubois GR, Jones CE, Trifilieff A: IL-17, produced by lymphocytes and neutrophils, is necessary for lipopolysaccharide-induced airway neutrophilia: IL-15 as a possible trigger. J Immunol 2003;170(4):2106–2112.

    PubMed  CAS  Google Scholar 

  52. Tsuchiya M, Asano S, Kaziro Y, Nagata S. Isolation and characterization of the cDNA for murine granulocyte colony-stimulating factor. Proc. Natl Acad USA 1986;83(20):7633–7637.

    Article  CAS  Google Scholar 

  53. Larsen A, Davis T, Curtis BM et al: Expression cloning of a human granulocyte colony-stimulating factor receptor: a structural mosaic of hematopoietin receptor, immunoglobulin, and fibronectin domains. J Exp Med 1990;172(6):1559–1570.

    Article  PubMed  CAS  Google Scholar 

  54. Ye P, Rodriguez FH, Kanaly S et al.: Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med 2001;194(4):519–528.

    Article  PubMed  CAS  Google Scholar 

  55. Niess JH, Brand S, Gu X, et al: CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 2005;307(5707):254–258.

    Article  PubMed  CAS  Google Scholar 

  56. Ohkubo T, Tsuda M, Suzuki S, El BN, Yamamura M. Peripheral blood neutrophils of germ-free rats modified by in vivo granulocyte-colony-stimulating factor and exposure to natural environment. Scand J Immunol 1999;49(1):73–77.

    Article  PubMed  CAS  Google Scholar 

  57. Lieschke GJ, Grail D, Hodgson G, et al: Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood 1994;84(6):1737–1746.

    PubMed  CAS  Google Scholar 

  58. Liu F, Wu HY, Wesselschmidt R, Kornaga T, Link DC: Impaired production and increased apoptosis of neutrophils in granulocyte colony-stimulating factor receptor-deficient mice. Immunity 1996;5(5):491–501.

    Article  PubMed  CAS  Google Scholar 

  59. Nakae S, Komiyama Y, Nambu A, et al: Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 2002;17(3):375–387.

    Article  PubMed  CAS  Google Scholar 

  60. Ghilardi N, Kljavin N, Chen Q, Lucas S, Gurney AL, de Sauvage FJ. Compromised humoral and delayed-type hypersensitivity responses in IL-23-deficient mice. J Immunol 2004;172(5):2827–2833.

    PubMed  CAS  Google Scholar 

  61. Horwitz BH, Mizgerd JP, Scott ML, Doerschuk CM: Mechanisms of granulocytosis in the absence of CD18. Blood 2001;97(6):1578–1583.

    Article  PubMed  CAS  Google Scholar 

  62. Ren Y, Stuart L, Lindberg FP et al: Nonphologistic clearance of late apoptotic neutrophils by macrophages: efficient phagocytosis independent of {{beta}{ 2 integrins. J Immunol 2001;166(7):4743–4750.

    PubMed  CAS  Google Scholar 

  63. Savill JS, Wyllie AH, Henson JE, Walport MJ, Henson PM, Haslett C. Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages. J Clin Invest 1989;83(3):865–875.

    PubMed  CAS  Google Scholar 

  64. Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM: Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 1998;101(4):890–898.

    PubMed  CAS  Google Scholar 

  65. Savill J, Fadok V. Corpse clearance defines the meaning of cell death. Nature 2000;407(6805):784–788.

    Article  PubMed  CAS  Google Scholar 

  66. Hoffmann PR, Kench JA, Vondracek A, et al: Interaction between phosphatidylserine and the phosphatidylserine receptor inhibits immune responses in vivo. J Immunol 2005;174(3):1393–1404.

    PubMed  CAS  Google Scholar 

  67. Stuart LM, Lucas M, Simpson C, Lamb J, Savill J, Lacy-Hulbert A Inhibitory effects of apoptotic cell ingestion upon endotoxin-driven myeloid dendritic cell maturation. J Immunol 2002:168(4):1627–1635

    PubMed  CAS  Google Scholar 

  68. Huynh ML, Fadok VA, Henson PM: Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-{beta{ 1 secretion and the resolution of inflammation. J Clin Invest 2002;109(1):41–50.

    Article  PubMed  CAS  Google Scholar 

  69. Demetri GD, Zenzie BW, Rheinwald JG, Griffin JD: Expression of colony-stimulating factor genes by normal human mesothelial cells and human malignant mesothelioma cells lines in vitro. Blood 1989;74(3):940–946.

    PubMed  CAS  Google Scholar 

  70. Zsebo KM, Yuschenkoff VN, Schiffer S, et al: Vascular endothelial cells and granulopoiesis: interleukin-1 stimulates release of G-CSF and GM-CSF. Blood 1988;71(1):99–103.

    PubMed  CAS  Google Scholar 

  71. Suzuki A, Takahashi T, Okuno Y et al: IL-1 production as a regulator of G-CSF and IL-6 production in CSF-producing cell lines. Br J Cancer 1992;65(4):515–518.

    PubMed  CAS  Google Scholar 

  72. Lenhoff S, Olofsson T. Cytokine regulation of GM-CSF and G-CSF secretion by human umbilical cord vein endothelial cells (HUVEC). Cytokine 1996;8(9): 702–709.

    Article  PubMed  CAS  Google Scholar 

  73. Ernst TJ, Ritchie AR, Demetri GD, Griffin JD: Regulation of granulocyte- and monocyte-colony stimulating factor mRNA levels in human blood monocytes is mediated primarily at a post- transcriptional level. J Biol Chem 1989;264(10):5700–5703.

    PubMed  CAS  Google Scholar 

  74. Vellenga E, Dokter W, de Wolf JT, van de Vinne B, Esselink MT, Halie MR. Interleukin-4 prevents the induction of G-CSF mRNA in human adherent monocytes in response to endotoxin and IL-1 stimulation. Br J Haematol 1991;79(1):22–26.

    PubMed  CAS  Google Scholar 

  75. Wieser M, Bonifer R, Oster W, Lindemann A, Mertelsmann R, Herrmann F: Interleukin-4 induces secretion of CSF for granulocytes and CSF for macrophages by peripheral blood monocytes. Blood 1989;73(5): 1105–1108.

    PubMed  CAS  Google Scholar 

  76. Koeffler HP, Gasson J, Tobler A: Transcriptional and posttranscriptional modulation of myeloid colony-stimulating factor expression by tumor necrosis factor and other agents. Mol Cell Biol 1988;8(8):3432–3438.

    PubMed  CAS  Google Scholar 

  77. Demetri GD, Zenzie BW, Rheinwald JG, Griffin JD: Expression of colony-stimulating factor genes by normal human mesothelial cells and human malignant mesothelioma cells lines in vitro. Blood 1989;74(3): 940–946.

    PubMed  CAS  Google Scholar 

  78. Lu L, Srour EF, Warren DJ, et al: Enhancement of release of granulocyte- and granulocyte-macrophage colony-stimulating factors from phytohemagglutinin-stimulated sorted subsets of human T lymphocytes by recombinant human tumor necrosis factor-alpha. Synergism with recombinant human IFN-gamma. J Immunol 1988;141(1):201–207.

    PubMed  CAS  Google Scholar 

  79. Oster W, Lindemann A, Mertelsmann R, Herrmann F. Granulocyte-macrophage colony-stimulating factor (CSF) and multilineage CSF recruit human monocytes to express granulocyte CSF. Blood 1989;73(1):64–67.

    PubMed  CAS  Google Scholar 

  80. Collins RG, Jung U, Ramirez M, et al: Dermal and pulmonary inflammatory disease in E-selectin and P-selectin double-null mice is reduced in triple-selectin-null mice. Blood 2001;98(3):727–735.

    Article  PubMed  CAS  Google Scholar 

  81. Spreandio M, Thatte A, Foy D, Ellies LG, Marth JD, Ley K. Severe impairment of leukocyte rolling in venules of core 2 glucosaminyltransferase-deficient mice. Blood 2001;97(12):3812–3819.

    Article  Google Scholar 

  82. Novatchkova M, Leibbrandt A, Werzowa J, Neubuser A, Eisenhaber F. The STIR-domain superfamily in singal transduction, development and immunity. Trends Biochem Sci, 2003;28(5):226–229.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Ley M.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ley, K., Smith, E. & Stark, M.A. IL-17A-producing neutrophil-regulatory Tn lymphocytes. Immunol Res 34, 229–242 (2006). https://doi.org/10.1385/IR:34:3:229

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:34:3:229

Key Words

Navigation