Skip to main content
Log in

Transcriptional control of thymocyte positive selection

  • Immunology at Emory University
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Thymocyte development proceeds through multiple regulated chekpoints to ensure that the mature T-cell population is useful for recognition of self major histocompatiblity complex (MHC) molecules, but not overtly autoreactive. Developing cells pass the positive selection checkpoint when the T-cell receptor (TCR) on immature thymocytes engages self peptide/MHC with low affinity. The resulting signal transduction inititates migration, survival, maturation, allelic exclusion, and lineage commitment. The changes in gene expression necessary for all of these cellular events are controlled by transcription factors responsive to signals in immature thymocytes. Recent progress has defined a small group of transcription factors that can be clearly linked to regulation of gene expression during positive selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu L, Scollay R, Egerton M, Pearse M, Spangrude GJ, Shortman K: CD4 expresed on earliest T-lineage precursor cells in the adult murine thymus. Nature 1991;349:71–74.

    Article  PubMed  CAS  Google Scholar 

  2. Wu L, Li CL, Shortman K: Thymic dendritic cell precursors: relationship to the T lymphocyte lineage and phenotype of the dendritic cell progeny. J Exp Med 1996;184:903–911.

    Article  PubMed  CAS  Google Scholar 

  3. von Boehmer H, Fehling HJ: Structure and function of the pre-T cell receptor. Annu Rev Immunol 1997;15:433–452.

    Article  Google Scholar 

  4. von Boehmer H, Aifantis I, Feinberg J, Lechner Q, Saint-Ruf C, Walter U, et al.: Pleiotropic changes controlled by the pre-T-cell receptor. Curr Opin Immunol 1999;11:135–142.

    Article  Google Scholar 

  5. Huesmann M, Scott B, Kisielow P, von Boehmer H: Kinetics and efficiacy of positive selection in the thymus of normal and T cell receptor transgenic mice. Cell 1991;66:533–540.

    Article  PubMed  CAS  Google Scholar 

  6. Robey E, Fowlkes BJ: Selective events in T cell development. Annu Rev Immunol 1994;12:675–705.

    Article  PubMed  CAS  Google Scholar 

  7. Hogquist KA, Jameson SC, Heath WR, Howard JL, Bevan MJ, Carbone FR: T cell receptor antagonist peptides induce positive selection. Cell 1994;76:17–27.

    Article  PubMed  CAS  Google Scholar 

  8. Droge W: Hypothesis on the origin of the strong alloreactivity. Immunobiology 1979;156:2–12.

    PubMed  CAS  Google Scholar 

  9. Lind EF, Prockop SE, Porritt HE,Petrie HT: Mapping precursor movement through the postnatal thymus nevelas specific microenvironments supporting defined stages of early lymphoid development. J Exp Med 2001;194:127–134.

    Article  PubMed  CAS  Google Scholar 

  10. Borgulya P, Kishi H, Uematsu Y, von Boehmer H: Exclusion and inclusion of α and β T cell receptor alleles. Cell 1992;69:529–537.

    Article  PubMed  CAS  Google Scholar 

  11. Germain RN: T-cell development and the CD4-CD8 lineage decision. Nat Rev Immunol 2002;2:309–322.

    Article  PubMed  CAS  Google Scholar 

  12. Hashimoto K, Sohn SJ, Levin SD, Tada T, Perlmutter RM, Nakayama T: Requirement for p56 kk tyrosine kinase activaton in T cell receptor-mediated thymic selection. J Exp Med 1996;184:931–943.

    Article  PubMed  CAS  Google Scholar 

  13. Delgado P, Fernandez E, Dave V, Kappes D, Alareon B: CD3delta couples T-cell receptor signalling to ERK activation and thymocyte positive selection. Nature 2000; 406:426–430.

    Article  PubMed  CAS  Google Scholar 

  14. Shores EW, Tran T, Grinberg A, Sommers CL, Shen H, Love PE: Role of the multiple T cell receptor (TCR)-§ chain signaling motifs in selection of the T cell repertoire. J Exp Med 1997;185:893–900.

    Article  PubMed  CAS  Google Scholar 

  15. Negishi I, Motoyama N, Nakayama K-i, Nakayama K, Senju S, Hatakeyama S, et al.: Essential role for ZAP-70 in both positive and negative selection of thymocytes. Nature 1995;376:435–438.

    Article  PubMed  CAS  Google Scholar 

  16. Fischer K-D, Zmuidzinas A, Gardner S, Barbacid M, Bernstein A, Guidos C: Defective T-cell receptor signalling and positive selection of Vav-deficient CD4+ CD8+ thymocytes. Nature 1995;374:474–476.

    Article  PubMed  CAS  Google Scholar 

  17. Dower NA, Stang SL, Bottorff DA, Ebinu JO, Dickie P, Ostergaard HL, Stone JC: RasGRP is essential for mouse thymocyte differentiation and TCR signaling. Nat Immunol 2000;1:317–321.

    Article  PubMed  CAS  Google Scholar 

  18. Alberola-Ila J, Forbush KA, Seger R, Krebs EG, Perlmutter RM: Selective requirement for MAP kinase activation in thymocyte differentiation. Nature 1995;373:620–623.

    Article  PubMed  CAS  Google Scholar 

  19. Gong Q, Cheng AM, Akk AM, Alberola-Ila J, Gong G, Pawson T, Chan AC: Disruption of T cell signaling networks and development by Grb2 haploid insufficiency. Nat Immunol 2001;2:29–36.

    Article  PubMed  CAS  Google Scholar 

  20. Gao EK, Lo D, Cheney R, Kanagawa O, Sprent J: Abnormal differentiation of thymocytes in mice treated with cyclosporin A Nature 1988;336:176–179.

    Article  PubMed  CAS  Google Scholar 

  21. Jenkins MK, Schwartz RH, Pardoll DM: Effects of cyclosporine A on T cell development and clonal deletion. Science 1988;241:1655–1658.

    Article  PubMed  CAS  Google Scholar 

  22. Hayden-Martinez K, Kane LP, Hedrick SM. Effects of a constitutively active form of calcineurin on T cell activation and thymic selection. J Immunol 2000;165:3713–3721.

    PubMed  CAS  Google Scholar 

  23. Hodge MR, Ranger AM, de la Brousse FC, Hoey T, Grusby MJ, Glimcher LH: Hyperproliferation and dysregulation of IL-4 expression in NF-ATp-deficient mice. Immunity 1996;4:397–405.

    Article  PubMed  CAS  Google Scholar 

  24. Ranger AM, Hodge MR, Gravallese EM, Oukka M, Davidson L, Alt FW, et al.: Delayed lymphoid repopulation with defects in IL-4-driven responses produced by inactivation of NF-ATc. Immunity 1998;8:125–134.

    Article  PubMed  CAS  Google Scholar 

  25. Yoshida H, Nishina H, Takimoto H, Marengère LEM, Wakeham AC, Bouchard D, et al.: The transcription factor NF-ATc1 regulates lymphocyte proliferation and Th2 cytokine production. Immunity 1998;8:115–124.

    Article  PubMed  CAS  Google Scholar 

  26. Oukka M, Ho I-C, de la Brousse FC, Hoey T, Grusby MJ, Glimcher LH: The transcription factor NFAT4 is involved in the generation and survival of T cells. Immunity 1998;9:295–304.

    Article  PubMed  CAS  Google Scholar 

  27. Anderson G, Anderson KL, Conroy LA, Hallam TJ, Moore NC, Owen JJ, Jenkinson EJ: Intracellular signaling events during positive and negative selection of CD4+CD8+ thymocytes in vitro. J Immunol 1995;154:3636–3643.

    PubMed  CAS  Google Scholar 

  28. Ranger AM, Oukka M, Rengarajan J, Glimcher LH: Inhibitory function of two NFAT family members in lymphoid homeostasis and Th2 development. Immunity 1998;9:627–635.

    Article  PubMed  CAS  Google Scholar 

  29. Voll RE, Jimi E, Phillips RJ, Barber DF, Rincon M, Hayday AC, et al.: NF-kappa B activation by the pre-T cell receptor serves as a selective survival signal in T lymphocyte development. Immunity 2000;13:677–689.

    Article  PubMed  CAS  Google Scholar 

  30. Boothby MR, Mora AL, Scherer DC, Brockman JA, Ballard DW: Perturbation of the T lymphocyte lineage in transgenic mice expressing a constitutive repressor of nuclear factor (NF)-kappaB. J Exp Med 1997;185:1897–1907.

    Article  PubMed  CAS  Google Scholar 

  31. Hettmann T, Leiden JM: NF-kappa B is required for the positive selection of CD8+ thymocytes. J Immunol 2000;165:5004–5010.

    PubMed  CAS  Google Scholar 

  32. Swirnoff AH, Milbrandt J: DNA-binding specificity of NGFI-A and related zinc finger transcription factors. Mol Cell Biol 1995;15:2275–2287.

    PubMed  CAS  Google Scholar 

  33. Shao H, Kono DH, Chen L-Y, Rubin EM, Kaye J: Induction of the early growth response (Egr) family of transcription factors during thymic selection. J Exp Med 1997;185:731–744.

    Article  PubMed  CAS  Google Scholar 

  34. Miyazaki T, Lemonnier FA: Modulation of thymic selection by expression of an immediate-early gene, early growth response 1 (Egr-1). J Exp Med 1998;188:715–723.

    Article  PubMed  CAS  Google Scholar 

  35. Bettini M, Xi H, Milbrandt J, Kersh GJ: Thymocyte development in early growth response gene 1-deficient mice. J Immunol 2002;169:1713–1720.

    PubMed  CAS  Google Scholar 

  36. Basson MA, Wilson TJ, Legname GA, Sarner N, Tomlinson PD, Tybulewicz VL, Zamoyska R: Early growth response (Egr)-1 gene induction in the thymus in response to TCR ligation during early steps in positive selection is not required for CD8 lineage commitment. J Immunol 2000;165:2444–2450.

    PubMed  CAS  Google Scholar 

  37. Xi H, Kersh GJ: Induction of the early growth response gene 1 promoter by TCR agonists and partial agonists: ligand potency is related to sustained phosphorylation of extracellular signal-related kinase substrates. J Immunol 2003;170:315–324.

    PubMed  CAS  Google Scholar 

  38. Sharrocks AD: The ETS-domain transcription factor family. Nat Rev Mol Cell Biol 2001;2:827–837.

    Article  PubMed  CAS  Google Scholar 

  39. Quong MW, Romanow WJ, Murre C: Eprotein function in lymphocyte development. Annu Rev Immunol 2002;20:301–322.

    Article  PubMed  CAS  Google Scholar 

  40. Bain G, Maandag EC, Izon DJ, Amsen D, Kruisbeek AM, Weintraub BC, et al.: E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 1994;79:885–892.

    Article  PubMed  CAS  Google Scholar 

  41. Zhuang Y, Soriano P, Weintraub H: The helix-loop-helix gene E2A is required for B cell formation. Cell 1994; 79:875–884.

    Article  PubMed  CAS  Google Scholar 

  42. Bain G, Engel I, Robanus Maandag EC, te Riele HP, Voland JR, Sharp LL, et al.: E2A deficiency leads to abnormalities in alphabeta T-cell development and to rapid development of T-cell lymphomas. Mol Cell Biol 1997;17:4782–4791.

    PubMed  CAS  Google Scholar 

  43. Bain G, Quong MW, Soloff RS, Hedrick SM, Murre C: Thymocyte maturation is regulated by the activity of the helix-loop-helix protein, E47. J. Exp Med 1999;190: 1605–1616.

    Article  PubMed  CAS  Google Scholar 

  44. Rivera RR, Johns CP, Quan J, Johnson RS, Murre C: Thymocyte selection is regulated by the helix-loop-helix inhibitor protein, 1d3. Immunity 2000;12:17–26.

    Article  PubMed  CAS  Google Scholar 

  45. Bain G, Cravatt CB, Loomans C, Alberola-Ila J, Hedrick SM, Murre C: Regulation of the helix-loop-helix proteins, E2A and Id3, by the Ras-ERK MARK cascade. Nat Immunol 2001;2:165–171.

    Article  PubMed  CAS  Google Scholar 

  46. Hendriks RW, Nawijn MC, Engel JD, van Doorninck H, Grosveld F, Karis A: Expression of the transcription factor GATA-3 is required for the development of the earliest T cell progenitors and correlates with stages of cellular proliferation in the thymus. Eur J Immunol 1999;29:1912–1918.

    Article  PubMed  CAS  Google Scholar 

  47. Hernandez-Hoyos G, Anderson MK, Wang C, Rothenberg EV, Alberola-Ila J: GATA-3 expression is controlled by TCR signals and regulates CD4/CD8 differentiation. Immunity 2003;19:83–94.

    Article  PubMed  CAS  Google Scholar 

  48. Pandolfi PP, Roth ME, Karis A, Leonard MW, Dzierzak E, Grosveld FG, et al: Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nat Genet 1995;11: 40–44.

    Article  PubMed  CAS  Google Scholar 

  49. Ting CN, Olson MC, Barton KP, Leiden JM: Transcription factor GATA-3 is required for development of the T-cell linear. Nature 1996;384:474–474.

    Article  PubMed  CAS  Google Scholar 

  50. Anderson MK, Hernandez-Hoyos G, Diome CJ, Arias AM, Chen D, Rothenberg EV: Definition of regulatory network elements for T cell development by perturbation analysis with PU. 1 and GATA-3. Dev Biol 2002;246: 103–121.

    Article  PubMed  CAS  Google Scholar 

  51. Taghon T, De Smedt M, Stolz F, Cnockaert M, Plum J, Leclercq, G: Enforced expression of GATA-3 severely reduces human thymic cellularity. J Immunol 2001;167: 4468–4475.

    PubMed  CAS  Google Scholar 

  52. Okamura RM, Sigvardsson M, Galceran J, Verbeek S, Clevers H, Grosschedl R: Redundant regulation of T cell differentiation and TCR α gene expression by the transcription factors LEF-1 and TCF-1. Immunity 1998; 8:11–20.

    Article  PubMed  CAS  Google Scholar 

  53. Thomas JO, Travers AA: HMG1 and 2, and related ‘architectural’ DNA-binding proteins. [erratum appears in Trends Biochem Sci 2001 Apr,26(4):219]. Trends Biochem Sci 2001;26:167–174.

    Article  PubMed  CAS  Google Scholar 

  54. Wilkinson B, Chen JY, Han P, Rufner KM, Goularte OD, Kaye J: TOX: an HMG box protein implicated in the regulation of thymocyte selection. Nat Immunol 2002; 3:272–280.

    Article  PubMed  CAS  Google Scholar 

  55. Azzam HS, Grinberg A, Lui K, Shen H, Shores EW, Love PE: CD5 expression is developmentally regulated by T cell receptor (TCR) signals and TCR avidity. J Exp Med 1998;188:2301–2311.

    Article  PubMed  CAS  Google Scholar 

  56. Takagi T, Harada J, Ishii S: Murine Schnurri-2 is required for positive selection of thymocytes. Nat Immunol 2001;2:1048–1053.

    Article  PubMed  CAS  Google Scholar 

  57. Kingsley DM: The TGF-beta superfamily: new members, new receptors and new genetic tests of function in different organisms. Genes Dev 1994;8:133–146.

    Article  PubMed  CAS  Google Scholar 

  58. Takahama Y, Letterio JJ, Suzuki H, Farr AG, Singer A: Early progression of thymocytes along the CD4/CD8 developmental pathway is regulated by a subset of thymic epithelial cells expressing transforming growth factor beta. J Exp Med 1994;179:1495–1506.

    Article  PubMed  CAS  Google Scholar 

  59. Hager-Theodorides AL, Outram SV, Shah DK, Sacedon R, Shrimpton RE, Vicente A, et al.: Bone morphogenetic protein 2/4 signaling regulates early thymocyte differentiation J Immunol 2002;169:5496–5504.

    PubMed  CAS  Google Scholar 

  60. Pear WS, Radtke F: Notch signaling in lymphopoiesis. Semin Immunol 2003;15:69–79.

    Article  PubMed  CAS  Google Scholar 

  61. Ordentlich P, Lin A, Shen CP, Blaumueller C, Matsuno K, Artavanis-Tsakonas S, Kadesch T: Notch inhibition of E47 supports the existence of a novel signaling pathway. Mol Cell Bio 1998;18:2230–2239.

    CAS  Google Scholar 

  62. Radtke F, Wilson A, Stark G, Bauer M, van Meerwijk J, MacDonald HR, Aguet M: Deficient T cell fate specification in mice with an induced inactivation of Notch I. Immunity 1999;10:547–558.

    Article  PubMed  CAS  Google Scholar 

  63. Han H, Tamigaki K, Yamamoto N, Kuroda K, Yoshimoto M, Nakahata T, et al.: Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision. Int Immunol 2002;14:637–645.

    Article  PubMed  CAS  Google Scholar 

  64. Robey E, Chang D, Itano A, Cado D, Alexander H, Lans D, et al.: An activated form of notch influences the choice between CD4 and CD8 T cell lineages. Cell 1996;87:483–492.

    Article  PubMed  CAS  Google Scholar 

  65. Deftos ML, Huang E, Ojala EW, Forbush KA, Bevan MJ: Notchl signaling promotes the maturation of CD4 and CD8 SP thymocytes. Immunity 2000;13:73–84.

    Article  PubMed  CAS  Google Scholar 

  66. Izon DJ, Punt JA, Xu L, Kamel FG, Allman D, Myung PS, et al.: Notch 1 regulates maturation of CD4+ and CD8+ thymocytes by modulating TCR signal strength. Immunity 2001;14:253–264.

    Article  PubMed  CAS  Google Scholar 

  67. Fowlkes BJ, Robey EA: A reasessment of the effect of activated Notchl on CD4 and CD8 T cell development. J Immunol 2002;169:1817–1821.

    PubMed  CAS  Google Scholar 

  68. Yasutomo K, Doyle C, Miele L, Fuchs, C, Genmain RN: The duration of antigen receptor signalling determines CD4+ versus CD8+T-cell lineage fate. Nature 2000;404:506–510.

    Article  PubMed  CAS  Google Scholar 

  69. Wolfer A, Bakker T, Wilson A, Nicolas M, Ioannidis V, Littman DR, et al.: Inactivation of Notch 1 in immature thymocytes does not perturb CD4 or CD8T cell development. Nat Immunol 2001;2:235–241.

    Article  PubMed  CAS  Google Scholar 

  70. Sawada S, Scarborough JD, Killeen N, Litman DR: A lineage-specific transcriptional silencer regulates CD4 gene expression during T lymphocyte development. Cell 1994;77:917–929.

    Article  PubMed  CAS  Google Scholar 

  71. Siu G, Wurster AL, Duncan DD, Soliman TM, Hedrick SM: A transcriptional silencer controls the developmental expression of the CD4 gene. EMBO J 1994;13:3570–3579.

    PubMed  CAS  Google Scholar 

  72. Taniuchi I, Osato M, Egawa T, Sunshine MJ, Bae SC, Komori T, et al.: Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell 2002;111:621–633.

    Article  PubMed  CAS  Google Scholar 

  73. Woolf E, Xiao C, Fainaru O, Lotem J, Rosen D, Negreanu V, et al.: Runx3 and Runx1 are required for CD8 T cell development during thymopoiesis. Proc Natl Acad Sci USA 2003;100:7731–7736.

    Article  PubMed  CAS  Google Scholar 

  74. Wolffe AP: Transcriptional activation. Switched-on chromatin. Curr Biol 1994;4:525–528.

    Article  PubMed  CAS  Google Scholar 

  75. Wang W, Chi T, Xue Y, Zhou S, Kuo A, Crabtree GR: Architectural DNA binding by a high-mobility-group/kinesin-like subunit in mammalian SWI/SNF-related complexes. Proc Natl Acad Sci USA 1998;95:492–498.

    Article  PubMed  CAS  Google Scholar 

  76. Chi TH, Wan M, Zhao K, Taniuchi I, Chen L, Littman DR, Crabtree GR: Reciprocal regulation of CD4/CD8 expression by SWI/SNF-like BAF complexes. Nature 2002;418:195–199.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kersh, G.J. Transcriptional control of thymocyte positive selection. Immunol Res 29, 125–137 (2004). https://doi.org/10.1385/IR:29:1-3:125

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:29:1-3:125

Key words

Navigation