Skip to main content
Log in

Defining the parameters necessary for T-cell recognition of ligands that vary in potency

  • Immunology at Emory University
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Identification of the mechanisms by which a T cell is able to sense ligands of varying strength, such as those that mediate tumor growth, viral evasion, and autoimmunity, is a major goal of T-cell activation studies. In recent years, parameters important for T-cell activation by strong ligands (agonists) are beginning to be characterized. Here, we review our current work on the factors that are critical for T-cell activation by ligands that differ in potency, typified by full agonists, weak agonists, partial agonists, and antagonists. Furthermore, we discuss mechanisms contributing to the lack of a full range of effector functions observed in T cells following their stimulation by suboptimal ligands. Finally, we present strategies for the design of peptide-based therapies to control activation of polyclonal, autoreactive T-cell populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Evavold BD: Tickling the TCR: selective T-cell functions stimulated by altered peptide ligands. Immunol Today 1993;4:602–609.

    Article  Google Scholar 

  2. Evavold BD: Separation of IL-4 production from Th cell proliferation by an altered T cell receptor ligand. Science 1991;252:1308–1310.

    Article  PubMed  CAS  Google Scholar 

  3. Sloan-Lancaster J: Altered peptide ligand-induced partial T-cell activation: molecular mechanisms and role in T cell biology. Annu Rev Immunol 1996;14:1–27.

    Article  PubMed  CAS  Google Scholar 

  4. Kersh G: Essential flexibility in the T-cell recognition of antigen. Nature 1996;380:495–498.

    Article  PubMed  CAS  Google Scholar 

  5. Jameson S: T cell receptor antagonists and partial agonists. Immunity 1995;2:1–11.

    Article  PubMed  CAS  Google Scholar 

  6. Sloan-Lancaster J: Induction of T-cell anergy by altered T-cell-receptor ligand on live antigen-presenting cells. Nature 1993;363:156–159.

    Article  PubMed  CAS  Google Scholar 

  7. Germain RN: The dynamics of T cell receptor signaling: complex orchestration and the key roles of tempo and cooperation. Annu Rev Immunol 1999; 17:467–522.

    Article  PubMed  CAS  Google Scholar 

  8. McKeithan T: Kinetic proofreading in T-cell receptor signal transduction. Proc Natl Acad Sci USA 1995;92:5042–5046.

    Article  PubMed  CAS  Google Scholar 

  9. Rabinowitz JD: Kinetic discrimination in T-cell activation. Proc Natl Acad Sci USA 1996;93:1401–1405.

    Article  PubMed  CAS  Google Scholar 

  10. Lyons D: A TCR binds to antagonist ligands with lower affinities and faster dissociation rates than to agonists. Immunity 1996;5:53–61.

    Article  PubMed  CAS  Google Scholar 

  11. McNeil L: Dissociation of peripheral T cell responses from thymocyte negative selection by weak agonists supports a spare receptor model of T cell activation. Proc Natl Acad Sci USA 2002;99:4520–4525.

    Article  PubMed  CAS  Google Scholar 

  12. Ford M: Regulation of polyclonal T cell responses by an MHC anchor-substituted variant of MOG 35-55. J Immunol 2003;171(3).

  13. Liu G: Low avidity recognition of self-antigen by T cells permits escape from central tolerance. Immunity 1995;3:407–415.

    Article  PubMed  CAS  Google Scholar 

  14. Valitutti S: Senal triggering of many T-cell receptors by a few peptide-MHC complexes. Nature 1995;375:148–151.

    Article  PubMed  CAS  Google Scholar 

  15. Stephenson RP: A modification of receptor theory. Br J Pharmacol 1956;11:379–393.

    CAS  Google Scholar 

  16. Roehm N: The major histocompatibility complex-restricted antigen receptor on T cells: distribution on thymus and peripheral T cells. Cell 1984;38:577–584.

    Article  PubMed  CAS  Google Scholar 

  17. Peterson D: Quantitative analysis of the T cell repertoire that escapes negative selection. Immunity 1999;11:453–462.

    Article  PubMed  CAS  Google Scholar 

  18. Davey G: Preselection thymocytes are more sensitive to T cell receptor stimulation than mature T cells. J Exp Med 1998;188:1867–1874.

    Article  PubMed  CAS  Google Scholar 

  19. Liu C: T cell positive selection by a high density, low affinity ligand. Proc Natl Acad Sci USA 1998;95:4522–4526.

    Article  PubMed  CAS  Google Scholar 

  20. Lucas B: Divergent changes in the sensitivity of maturing T cells to structurally related ligands underlies formation of a useful T cell repertoire. Immunity 1999; 10:367–376.

    Article  PubMed  CAS  Google Scholar 

  21. Spain L: A peptide antigen antagonist prevents the differentiation of T cell receptor transgenic thymocytes. J Immunol 1994;152:1709–1717.

    PubMed  CAS  Google Scholar 

  22. Page D: Negative selection of CD4+ CD8+ thymocytes by T-cell receptor peptide antagonists. Proc Natl Acad Sci USA 1994;91:4057–4061.

    Article  PubMed  CAS  Google Scholar 

  23. McNeil L: TCR reserve: a novel principle of CD4 T cell activation by weak ligands. J Immunol 2003; 170:1224–1230.

    PubMed  CAS  Google Scholar 

  24. Daniels M: Cutting edge: A Test of the dominant negative signal model for TCR antagonism. J Immunol 1999;162:3761–3764.

    PubMed  CAS  Google Scholar 

  25. Dittel B: Cross-antagonism of a T cell clone expressing two distinct T cell receptors. Immunity 1999;11:289–298.

    Article  PubMed  CAS  Google Scholar 

  26. Robertson J: Cutting edge: ducling TCRs: peptide antagonism of CD4+ T cells with dual antigen specifities. J Immunol 1999;163:1750–1754.

    PubMed  CAS  Google Scholar 

  27. Stotz S: T cell receptor (TCR) antagonism without a negative signal: evidence from T cell hybridomas expressing two independent TCRs. J Exp Med 1999;189:253–264.

    Article  PubMed  CAS  Google Scholar 

  28. Yang W: Study of the mechanism of TCR antagonism using dual-TCR-expressing T cells. J Immunol 2003; 170:4532–4538.

    PubMed  CAS  Google Scholar 

  29. Kilgore N: Cutting edge: dependence of TCR antagonism on Src homology 2 domain-containing protein tyrosine phosphatase activity. J Immunol 2003;170:4891–4895.

    PubMed  CAS  Google Scholar 

  30. Matthews C: Characterization of hematopoietic intracellular protein tyrosine phosphatases: description of a phosphatase containing an SH2 domain and another enriched in proline-, glutamic acid-, serine-, and threonine-rich sequences. Trans Proc 1992;24:712–713.

    Google Scholar 

  31. Nakamura K: Effects of Src homology domain 2 (SH2)-containing inositol phosphatase (SHIP), SH2-containing phosphotyrosine phosphatase (SHP)-1, and SHP-2 SH2 decoy proteins on Fe gamma RIIB1-effector interactions and inhibitory functions. J Immunol 2000;164:631–638.

    PubMed  CAS  Google Scholar 

  32. Tsui FW: Molecular basis of the motheaten phenotype. Immunol Rev 1994;138:185–206.

    Article  PubMed  CAS  Google Scholar 

  33. Lorenz U: Lack of SHPTPI results in src-family kinase hyperactivation and thymocyte hyperresponsiveness. Proc Natl Acad Sci USA 1996;93:9624–9629.

    Article  PubMed  CAS  Google Scholar 

  34. Carter JD: The tyrosine phosphatase SHP-1 influences thymocyte selection by setting TCR signaling thresholds. Int Immunol 1999;11:1999–2014.

    Article  PubMed  CAS  Google Scholar 

  35. Plas D: Direct regulation of ZAP-70 by SHP-1 in T cell antigen receptor signaling. Science 1996;272:1173–1176.

    Article  PubMed  CAS  Google Scholar 

  36. Plas D: Cutting edge: the tyrosine phosphatase SHP-1 regulates thymocyte positive selection. J Immunol 1999;162:5680–5684.

    PubMed  CAS  Google Scholar 

  37. Johnson KG: TCR signaling thresholds regulating T cell development and activation are dependent upon SHP-1. J Immunol 1999;162:3802–3813.

    PubMed  CAS  Google Scholar 

  38. Zang Y: Involvement of the SHP-1 tyrosine phosphatase in regulation of T cell selection. J Immunol 1999;163: 3530–3538.

    PubMed  Google Scholar 

  39. Sloan-Lancaster J: Altered peptide ligand-induced partial T cell activation: molecular mechanisms and role in T cell biology. Annu Rev Immunol 1996;14:1–27.

    Article  PubMed  CAS  Google Scholar 

  40. Anderton S: Fine specificity of the myelin-reactive T cell repertoire: implications for TCR antagonism in autoimmunity. J Immunol 1998;161:3357–3364.

    PubMed  CAS  Google Scholar 

  41. Anderton S: Therapeutic potential of TCR antagonists is determined by their ability to modulate a diverse repertoire of autoreactive T cells. Eur J Immunol 1999;29:1850–1857.

    Article  PubMed  CAS  Google Scholar 

  42. Nicholson L: An altered peptide ligand mediates immune deviation and prevents autoimmune encephalomyelitis. Immunity 1995;2:397–405.

    Article  Google Scholar 

  43. Nicholson L: A T cell receptor antagonist peptide induces T cells that mediate by stander suppression and prevent autoimmune encephalomyelitis induced with multiple myelin antigens. Proc Natl Acad Sci USA 1997;94:9279–9284.

    Article  PubMed  CAS  Google Scholar 

  44. Martin R: Immunological aspects of demyelinating diseases. Annu Rev Immunol 1992;10:153–187.

    Article  PubMed  CAS  Google Scholar 

  45. Mendel I: A myelin oligodendrocyte glycoprotein peptide induces typical chronic experimental autoimmune encephalomyelitis in H-2b mice: fine specificity and T cell receptor V beta expression of encephalitogenic T cells. Eur J Immunol 1995;25:1951–1959.

    Article  PubMed  CAS  Google Scholar 

  46. Bielekova B: Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat Med 2000;6:1167–1175.

    Article  PubMed  CAS  Google Scholar 

  47. Kuchroo V: Single TCR antagonist peptide inhibits experimental allergic encephalomyelitis mediated by a diverse T cell repertoire. J Immunol 1994;153: 3326–3336.

    PubMed  CAS  Google Scholar 

  48. Whitham R: Lymphocytes from SJL/J mice immunized with spinal cord respond selectively to a peptide of proteolipid protein and transfer relapsing demyelinating experimental autoimmune encephalomyelitis. J Immunol 1991;146:101–107.

    PubMed  CAS  Google Scholar 

  49. Vanderlugt C: Epitope spreading. Curr Opin Immunol 1996;8:831–836.

    Article  PubMed  CAS  Google Scholar 

  50. McRae B: Functional evidence for epitope spreading in the relapsing pathology of experimental autoimmune encephalomyelitis. J Exp Med 1995;182:75–85.

    Article  PubMed  CAS  Google Scholar 

  51. Bettelli E: Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice developspontaneous autoimmune optic neuritis. J Exp Med 2003;197:1073–1081.

    Article  PubMed  CAS  Google Scholar 

  52. Saibil SD: Weak agonist self-peptides promote selection and tuning of virus-specific T cells. Eur J Immunol 2003;33:685–696.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kilgore, N.E., Ford, M.L., Margot, C.D. et al. Defining the parameters necessary for T-cell recognition of ligands that vary in potency. Immunol Res 29, 29–39 (2004). https://doi.org/10.1385/IR:29:1-3:029

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:29:1-3:029

Key Words

Navigation