Skip to main content
Log in

Gene delivery into primary T cells

Overview and characterization of a transgenic model for efficient adenoviral transduction

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Technologies for transfer of exogenous genes into primary T cells have been limited until recently. The introduction of new approaches for gene transfer viadifferent viral vectors has expan ded the options for genetic manipulation of primary T cells and has provided powerful tools for studies of T cell activation and differentiation. We provide a brief overview of the systems currently available and contranst the advantages and disadvantages of each. We also describe a new transgenic model that enables highly efficient gene delivery into primary T cells by nonreplic ating adenoviral vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burkholder JK, Decker J, Yang NS: Rapid transgene expression in lymphocyte and macrophage primary cultures after particle bombardment-mediated gene transfer. J Immunol Methods 1993;165:149–56.

    Article  PubMed  CAS  Google Scholar 

  2. Woffendin C, Yang ZY, Udaykumar Xu L, Yang NS, Sheehy MJ, Nabel GJ: Norn iraland viral deliver of a human immunodeficiency virus protective gene into primary human T cells. Proc Natl Acad Sci USA 1994;91:11,581–11,585

    Article  CAS  Google Scholar 

  3. Philip R, Brunette E, Kilinski L, Murugesh D, McNally MA, Ucar K, Rosenblatt J, Okarma TB, Lebkowski JS: Efficient and sustained gene expression in primary T lymphocytes and primary and cultured tumor cells mediated by adeno-associated virus plasmid DNA complexed to cationic liposomes. Mol Cell Biol 1994;14:2411–2418.

    PubMed  CAS  Google Scholar 

  4. Miller AD: Retrov iralvectors. Curr TopMicrobiol Immunol 1992;158:1–24.

    CAS  Google Scholar 

  5. Robbins PD, Tahara H, Mueller G, et al: Retroviral vectors for use in human gene therapy for cancer, Gaucherdisease, and arthritis. Ann NY Acad Sci 1994;716:72–88, discussion 88,89.

    Article  PubMed  CAS  Google Scholar 

  6. Roe T, Reynolds T, Yu G, Brown P: Integration of murine leukemia virus DNA depends on mitosis. EMBO J 1993;12:2099–2108.

    PubMed  CAS  Google Scholar 

  7. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D: In vivo gene delivery and stable transduction of nondividing cells by a lentiv iral vector. Science 1996;272:263–267.

    Article  PubMed  CAS  Google Scholar 

  8. Bestor TH: Gene silencing as a threat to the success of gene therapy. J Clin Invest 2000;105:409–411.

    PubMed  CAS  Google Scholar 

  9. Indraccolo S, Minuzzo S, Roccaforte F, et al: Effects of CD2 locus control region sequences on gene expression by retroviral and lentiviral vectors. Blood 2001;98:3607–3617.

    Article  PubMed  CAS  Google Scholar 

  10. Wilson JM, Ping AJ, Krauss JC, Mayo-Bond L, Rogers CE, Anderson DC, Todd RF: Correction of CD18-deficient lymphocytes by retrovirus-mediated gene, transfer. Sciene 1990;248:1413–1416

    Article  CAS  Google Scholar 

  11. Finer MH, Dull TJ, Qin L, Farson D, Roberts MR: Rat: a high-efficiency retroviral transduction system for primary human T lymphocytes. Blood 1994;83:43–50.

    PubMed  CAS  Google Scholar 

  12. Kotani H, Newton PB 3rd, Zhang S, Chiang YL, Otto E, Weaver L, Blaese RM, Anderson WF, McGarrity GJ: Inproved methodsof retroviral vector transduction and production for gene therapy. Hum Gene Ther 1994;5:19–28.

    PubMed  CAS  Google Scholar 

  13. Bunnell BA, Muul LM, Donaheu RE, Blaese RM, Morgan RA: Highefficiency retroviral-mediated gene transfer into human and non human primate peripheral blood lymphocytes. Proc Natl Acad Sci USA 1995;92:7739–7743.

    Article  PubMed  CAS  Google Scholar 

  14. Bahnson AB, Dunigan JT, Baysal BE, Mohney T, Atchison RW, Nimgaonkar MT, Ball ED, Barranger JA: Centrifugal enhancement of retroviral mediated gene transfer. J Virol Methods 1995;54:131–143.

    Article  PubMed  CAS  Google Scholar 

  15. Kavanaugh MP, Miller DG, Zhang W, Law W, Kozak SL, Kabat D, Miller AD: Cell-Surface receptors for gibbonape leukemia virus and ampho tropic murinere trovirusare inducible sodium-dependent phosphate symporters. Proc Natl Acad Sci USA 1994;91:7071–7075.

    Article  PubMed  CAS  Google Scholar 

  16. Miller AD: Cell-surface receptors for retrov iruses and implications for gene transfer. Proc Natl Acad Sci USA 1996;93:11,407–11,413

    CAS  Google Scholar 

  17. Kurre P, Kiem HP, Morris J, Heyward S, Battini JL, Miller AD: Efficient transduction by an amphotropic retrovirus vector is dependent on high-level expression of the cell surface virus receptor. J Virol 1999;73:495–500.

    PubMed  CAS  Google Scholar 

  18. Hodgson CP, Solaiman F: Virosomes: cationic liposomes enhance retroviral transduction. Nat Biotechnol 1996;14:339–342.

    Article  PubMed  CAS  Google Scholar 

  19. Costa GL, Benson JM, Seroogy CM, Achacoso P, Fathman CG, Nolan GP: Targeting rate populations of murine antigen-specific T lymphocytes by retroviral transduction for potential application in gene therapy for autoimmune disease. J Immunol 2000;164:3581–3590

    PubMed  CAS  Google Scholar 

  20. Shimada T, Fujii H, Mitsuya H, Nienhuis AW: Targetedand highly efficient gene transfer into CD4+ cells by a recombinant human immuno deficiency virus retroviral vector. J Clin Invest 1991;88:1043–1047.

    PubMed  CAS  Google Scholar 

  21. Poznansky M, Lever A, Bergeron L, Haseltine W, Sodroski J: Gene transfer into human lymphocytes by a defective human immunodeficiency virus type I vector. J Virol 1991;65:532–536.

    PubMed  CAS  Google Scholar 

  22. Pandya S, Boris-Lawrie K, Leung NJ, Akkina R, Planelles V: Development of an Rev-independent, minimal simian immunodeficiency virus-derived vector system. Hum Gene Ther 2001;12:847–857.

    Article  PubMed  CAS  Google Scholar 

  23. Kim SS, Kothari N, You XJ, Robinson WE Jr, Schnell T, Uberla K, Fan H: Generation of replication-defective helper-free vectors based on simian immunodeficiency virus. Virology 2001;282:154–167.

    Article  PubMed  CAS  Google Scholar 

  24. Zhou P, Lee J, Moore P, Brasky KM: High-efficiency gene transfer into rhesus macaque primary T lymphocytes by combining 32 degrees C centrifugation and CH-296-coated plates: effect of gene transfer protocolon T cell homing receptor expression. Hum Gene Ther 2001;12:1843–1855.

    Article  PubMed  CAS  Google Scholar 

  25. Curran MA, Kaiser SM, Achacoso PL, Nolan GP: Efficient transduction of nondividing cells by optimized feline immunode ficiency virus vectors. Mol Ther 2000;1:31–38.

    Article  PubMed  CAS  Google Scholar 

  26. Johnston JC, Gasmi M, Lim LE, Elder JH, Yee JK, Jolly DJ, Campbell KP, Davidson BL, Sauter SL: Minimum requirements for efficient transduc tion of dividing and nondividing cells by feline immunodeficiency virus vectors. J Virol 1999;73:4991–5000.

    PubMed  CAS  Google Scholar 

  27. Poeschla EM, Wong-Staal F, Looney DJ: Efficient transduction of nondividing human cells by feline immunode ficiency virus lentiviral vectors. Nat Med 1998;4:354–357.

    Article  PubMed  CAS  Google Scholar 

  28. Yamada K, Olsen JC, Patel M, Rao KW, Walsh CE: Functional correction of fanconianemia group C hematopoietic cells by the use of a novel lentivi ral vector. Mol Ther 2001;3:485–490.

    Article  PubMed  CAS  Google Scholar 

  29. O'Rourke JP, Newbound GC, Kohn DB, Olsen JC, Bunnell BA: Comparison of gene transfere fficiencies and gene expression levels achieved with equine infectious anemia virus- and human immun-odeficiency virus type I-derived lentivirus vectors. J Virol 2000;76:1510–1515.

    Google Scholar 

  30. Olsen JC: Gene transfer vectors derived from equine infections anemia virus. Gene Ther 1998;5:1481–1487.

    Article  PubMed  CAS  Google Scholar 

  31. Miyoshi H, Smith KA, Mosier DE, Venna IM, Torbett BE: Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vector. Science 1999;283:682–686.

    Article  PubMed  CAS  Google Scholar 

  32. Buchschacher GL Jr, Wong-Staal F: Development of lentiv iral vectors for gene therapy for human diseases. Blood 2000;95:2499–2504.

    PubMed  CAS  Google Scholar 

  33. Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D: Germline trans mission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 2002; 295:868–872.

    Article  PubMed  CAS  Google Scholar 

  34. Pfeifer A, Ikawa M, Dayn Y, Verma IM: Transgenesis by lentiviral vectors: lack of gene silencing in mammalian embryonic stem cells and preim plantation embryos. PNAS 2002;99:2140–2145.

    Article  PubMed  CAS  Google Scholar 

  35. Maurice M, Verhoeyen E, Salmon P, Trono D, Russell SJ, Cosset F-L: Efficient gene transfer into human primary blood lymphocytes by surface-engineered lentiviral vectors that display a T cell-activating polypeptide. Blood 2002;99:2342–2350.

    Article  PubMed  CAS  Google Scholar 

  36. Hamaguchi I, Woods NB, Panagopoulos I, Andersson E, Mikkola H, Fahlman C, Zufferey R, Carlsson L, Trono D, Karlsson S: Lentivirus vector gene expression during ES cell-derived hematopoietic development in vitro. J Virol 2000; 74:10,778–10,784.

    Article  CAS  Google Scholar 

  37. Salmon P, Kindler V, Ducrey O, Chapuis B, Zubler RH, Trono D: High-level transgene expression in human hematopoietic progenitors and differentiated blood lineages after transduction with improved lentiviral vectors. Blood 2000;96: 3392–3398.

    PubMed  CAS  Google Scholar 

  38. Chinnasamy D, Chinnasamy N, Enriquez MJ, Otsu M, Morgan RA, Candotti F: Lentiviral-mediated gene transfer into human lymphocytes: role of HIV-1 accessory proteins. Blood 2000;96:1309–1316.

    PubMed  CAS  Google Scholar 

  39. Barry SC, Seppen J, Ramesh N, Foster JL, Seyama K, Ochs HD, Garcia JV, Osborne WR: Lentiviral and murine retroviral transduction of T cells for expression of human CD40 ligand. Hum Gene Ther 2000;11:323–332.

    Article  PubMed  CAS  Google Scholar 

  40. Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L, Trono D: Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 1998;72:9873–9880.

    PubMed  CAS  Google Scholar 

  41. Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM: Development of a self-inactivating lentivirus vector. J Virol 1998;72: 8150–8157.

    PubMed  CAS  Google Scholar 

  42. Kafri T, van Praag H, Ouyang L, Gage FH, Verma IM: A packaging cell line for lentivirus vectors. J Virol 1999;73:576–584.

    PubMed  CAS  Google Scholar 

  43. Farson D, Witt R, McGuinness R, Dull T, Kelly M, Song J, Radeke R, Bukovsky A, Consiglio A, Naldini L: A new-generation stable inducible packaging cell line for lentiviral vectors. Hum Gene Ther 2001;12:981–997.

    Article  PubMed  CAS  Google Scholar 

  44. Pacchia AL, Adelson ME, Kaul M, Ron Y, Dougherty JP: Aninducible packaging cell system forsafe, efficient lentiviral vector production in the absence of HIV-1 accessory proteins. Virology 2001;282: 77–86.

    Article  PubMed  CAS  Google Scholar 

  45. Kotin RM: Prospects for the use of adeno-associated virus as a vector for human gene therapy. Hum Gene Ther 1994;5:793–801.

    PubMed  CAS  Google Scholar 

  46. Russell DW, Kay MA: Adeno-associated virus vectors and hematology. Blood 1999;94:864–874.

    PubMed  CAS  Google Scholar 

  47. Monahan PE, Samulski RJ: Adeno-associated virus vectors for gene therapy: more pros thancons? Mol Med Today 2000;6:433–440.

    Article  PubMed  CAS  Google Scholar 

  48. Ponnazhagan S, Curiel DT, Shaw DR, Alvarez RD, Siegal GP: Adeno-associated virus for cancer gene therapy. Cancer Res 2001;61: 6313–6321.

    PubMed  CAS  Google Scholar 

  49. Hanazono Y, Brown KE, Handa A, Melzger ME, Heim D, Kurtzman GJ, Donahue RE, Dunbar CE: In vivo marking of rhesus monkey lymphocytes by adeno-associated viral vectors: direct comparison with retroviral vectors. Blood 1999;94:2263–2270.

    PubMed  CAS  Google Scholar 

  50. Kotin RM, Siniscalco M, Samulski, RJ, Zhu XD, Hunter L, Laughlin CA, McLaughlin S, Muzyczka N, Rocchi M, Berns KI: Site-specific integration by adeno-associated virus. Proc Natl Acad Sci USA 1990;87:2211–2215.

    Article  PubMed  CAS  Google Scholar 

  51. Ponnazhagan S, Erikson D, Kearns WG, Zhou SZ, Nahreini P, Wang XS, Srivastava A: Lack of sitespecific integration of the recombinant adeno-associated virus 2 genomes in human cells. Hum Gene Ther 1997;8:275–284.

    PubMed  CAS  Google Scholar 

  52. Miller DG, Rutledge EA, Russell DW: Chromosomal effects of adeno-associated virus vector, integration. Nat Genet 2002;30: 147–148.

    Article  PubMed  CAS  Google Scholar 

  53. Okada T, Mizukami H, Urabe M, Nomoto T, Matsushita T, Hanazono Y, Kume A, Tobita K, Ozawa K: Development and characterization of an antisense-mediated prepackaging cell line for adeno-associated virus vector production. Biochem Biophys Res Commun 2001;288:62–68.

    Article  PubMed  CAS  Google Scholar 

  54. Graham FL: Adenovirus vectors for high-efficiency gene transfer into mammalian cells. Immunol Today 2000;21:426–428.

    Article  PubMed  CAS  Google Scholar 

  55. Graham FL, Prevec L: Methods for construction of adenovirus vectors. Mol Biotechnol 1995;3:207–220.

    PubMed  CAS  Google Scholar 

  56. Tomko RP, Xu R, Philipson L: HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B cox sackiev iruses. Proc Natl Acad Sci USA 1997;94:3352–3356.

    Article  PubMed  CAS  Google Scholar 

  57. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS, Horwitz MS, Crowell RL, Finberg RW: Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997; 275:1320–1323.

    Article  PubMed  CAS  Google Scholar 

  58. Bergelson JM, Krithivas A, Celi L, Droguett G, Horwitz MS, Wickham T, Crowell RL, Finberg RW: The murine CAR homologis a receptor for coxsackie B viruses and adenoviruses. J Virol 1998;72:415–419.

    PubMed  CAS  Google Scholar 

  59. Nemerow GR, Stewart PL: Role of alpha(v) integrins in adenovirus cellentry and gene delivery. Microbiol Mol Biol Rev 1999;63:725–734.

    PubMed  CAS  Google Scholar 

  60. Magnusson MK, Hong SS, Boulanger P, Lindholm L: Genetic retargeting of adenovirus: novel strategy employing “deknobbing” of the fiber. J Virol 2001;75: 7280–7289.

    Article  PubMed  CAS  Google Scholar 

  61. Kanerva A, Mikheeva GV, Krasnykh V, et al: Targe tingadenovirus to the serotype 3 receptor increases gene transfer efficiency to ovarian cancercells. Clin Cancer Res 2002; 8:275–280.

    PubMed  CAS  Google Scholar 

  62. Kim K, Smith T, Idamakanti N, Mulgrew K, Kaloss M, Kylefjord H, Ryan PC, Kaleko M, Stevenson SC: Targeting adenoviral vectors by using the extracellular domain of the cox sackie-adenovirus receptor: improved potency via trimerization. J Virol 2002;76: 1892–1903.

    Article  PubMed  CAS  Google Scholar 

  63. Di Nicola M, Milanesi M, Magni M, et al: Recombinant adeno viral vector-lipofect AMINE complex for gene transduction into human T lymphocytes. Hum Gene Ther 1999;10:1875–1884.

    Article  PubMed  Google Scholar 

  64. Chen Z, Ahonen M, Hamalainen H, Bergelson JM, Kahari VM, Lahesmaa R: High-efficiency gene transfer to primary T lymphocytes by recombinant adenovirus vectors. J Immunol Methods 2002; 260:79–89.

    Article  PubMed  CAS  Google Scholar 

  65. Yang Y, Wilson JM: Clearance of adenovirus-infected hepatocytes by MHC class 1-restricted CD4+CTLs in vivo. J Immunol 1995; 155:2564–2570.

    PubMed  CAS  Google Scholar 

  66. Yang Y, Su Q, Wilson JM: Role of viral antigens in destructive cellular immune responses to adenovirus vector-transduced cells in mouse lungs. J Virol 1996;70: 7209–7212.

    PubMed  CAS  Google Scholar 

  67. Benihoud K, Yeh P, Perricaudet M: Adenovirus vectors for gene delivery. Curr Opin Biotechnol 1999; 10:440–447.

    Article  PubMed  CAS  Google Scholar 

  68. Mack CA, Song WR, Carpenter H, et al: Circumvention of antiadenovirusneutralizing immunity by administration of an adenoviral vector of an alternate serotype. Hum Gene Ther 1997;8:99–109.

    Article  PubMed  CAS  Google Scholar 

  69. Croyle MA, Chirmule N, Zhang Y, Wilson JM: “Stealth” adeno viruses blunt cell-mediated and humoral immune responses against the virus and allow for significantgene expression upon readministration in the lung. J Virol 2001;75: 4792–4801.

    Article  PubMed  CAS  Google Scholar 

  70. Robbins PD, Ghivizzani SC: Viral vectors for gene therapy. Pharmacol Ther 1998;80:35–47.

    Article  PubMed  CAS  Google Scholar 

  71. Nevins JR, DeGregori J, Jakoi L, Leone G: Functional analysis of E2F transcription factor. Methods Enzymol 1997;283:205–219.

    PubMed  CAS  Google Scholar 

  72. Huang S, Endo RI, Nemerow GR: Upregulation of integrins alpha v beta 3 and alpha v beta 5 on human monocytes and T lymphocytes facilitates adeno virus-mediated gene delivery. J Virol 1995;69: 2257–2263.

    PubMed  CAS  Google Scholar 

  73. Wan YY, Leon RP, Marks R, Cham CM, Schaack J, Gajewski TF, DeGregori J: Transgenic expression of the coxsackie/adenovirus receptor enables adeno viral-mediated gene delivery in naive T cells. Proc Natl Acad Sci USA 2000;97:13,784–13,789.

    CAS  Google Scholar 

  74. Schmidt MR, Piekos B, Cabatingan MS, Woodland RT: Expression of a human cox sackie/adeno virus receptor transgene pemits adeno virus infection of primary lymphocytes. J Immunol 2000;165:4112–4119.

    PubMed  CAS  Google Scholar 

  75. Tallone T, Malin S, Samuelsson A, Wilbertz J, Miyahara M, Okamoto K, Poellinger L, Philipson L, Pettersson S: A mouse model for adenovirus gene delivery. Proc Natl Acad Sci USA 2001;98: 7910–7915.

    Article  PubMed  CAS  Google Scholar 

  76. Hurez V, Dzialo-Hatton R, Oliver J, Mathews RJ, Weaver CT: Efficient adenovirus-mediated gene transfer into primary T cell and thymocytes in a new coxsackie/adenovirus receptor transgenic model. BMC Immunol 2002;3:4.

    Article  PubMed  Google Scholar 

  77. Leon RP, Hedlund T, Meech SJ, Li S, Schaack J, Hunger SP, Duke RC, DeGregori J: Adenoviral-mediated gene transfer in lymphocytes. Proc Natl Acad Sci USA 1998;95: 13,159–13,164.

    Article  CAS  Google Scholar 

  78. Zhumabekov T, Corbella P, Tolaini M, Kioussis D: Improved version of a human CD2 minigene based vector for T cell-specific expression in transgenic mice. J Immunol Methods 1995;185: 133–140.

    Article  PubMed  CAS  Google Scholar 

  79. Murphy KM, Heimberger AB, Loh DY: Induction by antigen of intrathymic apoptosis of CD4+CD8+TCRlo thymocytes in vivo. Science 1990;250:1720–1723.

    Article  PubMed  CAS  Google Scholar 

  80. Saparov A, Wagner FH, Zheng R, Oliver JR, Maeda H, Hockett RD, Weaver CT: In terleukin-2 expression by a subpopulation of primary T cells is linked to enhanced memory/effector function. Immunity 1999;11:271–280.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Casey T. Weaver.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hurez, V., Hatton, R.D., Oliver, J. et al. Gene delivery into primary T cells. Immunol Res 26, 131–141 (2002). https://doi.org/10.1385/IR:26:1-3:131

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:26:1-3:131

Key words

Navigation