Skip to main content
Log in

Why can't the immune system control HIV-1? defining HIV-1-specific CD4+ T cell immunity in order to develop strategies to enhance viral immunity

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Globally, at least 60 million people have been infected with the human immunodeficiency virus type 1 (HIV-1), the majority of whom will develop the acquired immunodeficiency syndrome (AIDS) leading to tremendous morbidity and the mortality. Understanding the immunopathogenesis of AIDS and the immune correlates of viral protection are necessary to develop effective vaccines and immunotherapies. A major focus of our laboratory has been to understand the CD4+ T cell immune response directed against HIV-1, and to determine mechanisms of T cell dysfunction that lead to viral escape. In addition, we are interested in evaluating the TNF-TNFR family members as potential molecular adjuvants that could be incorporated into vaccines which could be used to further boost T cell immunogenicity in healthy or HIV-1-infected individuals, as many of these molecules have been shown to replace the functions of CD4+ T cell help.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ostrowski MA, Gu JX, Kovacs C, Freedman J, Luscher MA, MacDonald KS. Quantitative and qualitative assessment of human immunodeficiency virus type 1 (HIV-1)-specific CD4+ T cell immunity to gag in HIV-1-infected individuals with differential disease progression: reciprocal interferon-gamma and interleukin-10 responses. J Infect Dis 2001;184:1268–1278.

    Article  PubMed  CAS  Google Scholar 

  2. Rosenberg ES, LaRosa L, Flynn T, Robbins G, Walker BD. Characterization of HIV-1-specific T-helper cells in acute and chronic infection. Immunol Lett 1999;66:89–93.

    Article  PubMed  CAS  Google Scholar 

  3. Rosenberg ES, Billingsley JM, Caliendo AM, et al: Vigorous HIV-1-specific CD4+ T cell responses associated with control of viremia. Science 1997;278:1447–1450.

    Article  PubMed  CAS  Google Scholar 

  4. Rosenberg ES, Altfeld M, Poon SH, et al: Immune control of HIV-1 after early treatment of acute infection. Nature 2000;407:523–526.

    Article  PubMed  CAS  Google Scholar 

  5. Norris PJ, Sumaroka M, Brander C, et al: Multiple effector functions mediated by human immunodeficiency virus-specific CD4(+) T-cell clones. J Virol 2001;75:9771–9779.

    Article  PubMed  CAS  Google Scholar 

  6. Xiong Y, Luscher MA, Altman JD, et al: Simian immunodeficiency virus (SIV) infection of a rhesus macaque induces SIV-specific CD8(+) T cells with a defect in effector function that is reversible on extended interleukin-2 incubation. J Virol 2001;75:3028–3033

    Article  PubMed  CAS  Google Scholar 

  7. Oxenius A, Zinkernagel RM, Hengartner H. CD4+ T-cell induction and effector functions: a comparison of immunity against soluble antigens and viral infections. Adv Immunol 1998;70:313–367.

    Article  PubMed  CAS  Google Scholar 

  8. Callan MF, Tan L, Annels N, et al: Direct visualization of antigen-specific CD8+ T cells during the primary immune response to Epstein-Barr virus in vivo. J Exp Med 1998;187:1395–1402.

    Article  PubMed  CAS  Google Scholar 

  9. Reddehase MJ, Koszinowski UH. Significance of herpesvirus immediate early gene expression in cellular immunity to cytomegalovirus infection. Nature 1984;312:369–381.

    Article  PubMed  CAS  Google Scholar 

  10. Schmitz JE, Kuroda MJ, Santra S, et al: 1999. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 1999;283:857–860.

    Article  PubMed  CAS  Google Scholar 

  11. Klein MR, van Baalen CA, Holwerda AM, et al: Kinetics of Gag-specific cytotoxic T lymphocyte responses during the clinical course of HIV-1 infection: a longitudinal analysis of rapid progressors and long-term asymptomatics. J Exp Med 1995;181:1365–1372.

    Article  PubMed  CAS  Google Scholar 

  12. Pitcher CJ, Quittner C Peterson DM, et al: HIV-1-specific CD4+ T cells are detectable in most individuals with active HIV-1 infection, but decline with prolonged viral suppression. Nat Med 1999;5:518–525.

    Article  PubMed  CAS  Google Scholar 

  13. Harari A, Rizzardi GP, Ellefsen K, et al: Analysis of HIV-1-and CMV-specific memory CD4 T-cell responses during primary and chronic infection. Blood 2002;100:1381–1387.

    Article  PubMed  CAS  Google Scholar 

  14. Wilson JD, Imami N, Watkins A, et al: Loss of CD4+ T cell proliferative ability but not loss of Human Immunodeficiency Virus type 1 specificity equates with progression to disease. J Infect Dis 2000;182:792–798.

    Article  PubMed  CAS  Google Scholar 

  15. Harari A, Petitpierre S, Vallelian F, Pantaleo G. Skewed representation of functionally distinct populations of virus-specific CD4 T cells in HIV-1-infected subjects with progressive disease: changes after antiretroviral therapy. Blood 2004;103:966–972.

    Article  PubMed  CAS  Google Scholar 

  16. Younes SA, Yassine-Diab B, Dumont AR, et al: HIV-1 viremia prevents the establishment of interleukin 2-producing HIV-specific memory CD4+ T cells endowed with proliferative capacity. J Exp Med 2003;198:1909–1922.

    Article  PubMed  CAS  Google Scholar 

  17. McNeil AC, Shupert WL, Iyasere CA, et al: High-level HIV-1 viremia suppresses viral antigen-specific CD4(+) T cell proliferation. Proc Natl Acad Sci USA 2001; 98:13878–13883.

    Article  PubMed  CAS  Google Scholar 

  18. Betts MR, Exley B, Price DA, et al: Characterization of functional and phenotypic changes in anti-Gag vaccine-induced T cell responses and their role in protection after HIV-1 infection. Proc Natl Acad Sci USA 2005;102:4512–4517.

    Article  PubMed  CAS  Google Scholar 

  19. Douek DC, Brenchley JM, Betts MR, et al: HIV preferentially infects HIV-specific CD4+ T cells. Nature 2002;417:95–98.

    Article  PubMed  CAS  Google Scholar 

  20. Ye FY, Kovacs CM, Dimayuga RC, et al: Preferential apoptosis of HIV-1-specific CD4+ T cells. J Immunol 2005;174:2196–2204.

    Google Scholar 

  21. Mueller YM, De Rosa SC, Hutton JA, et al: Increased CD95/Fas-induced apoptosis of HIV-specific CD8(+) T cells. Immunity 2001;15:871–882.

    Article  PubMed  CAS  Google Scholar 

  22. Budd RC: Activation-induced cell death. Curr Opin Immunol 2001;13:356–362.

    Article  PubMed  CAS  Google Scholar 

  23. Adrain C, Martin SJ: The mitochondrial apoptosome: a killer unleashed by the cytochrome seas. Trends Biochem Sci 2001;26:390–397.

    Article  PubMed  CAS  Google Scholar 

  24. Hildeman DA, Mitchell T, Teague TK, et al: Reactive oxygen species regulate activation-induced T cell apoptosis. Immunity 1999;10:735–744.

    Article  PubMed  CAS  Google Scholar 

  25. Perfettini JL, Roumier T, Castedo M, et al: NF-{kappa}B and p53 are the dominant apoptosis-inducing transcription factors elicited by the HIV-1 envelope. J Exp Med 2004;199:629–640.

    Article  PubMed  CAS  Google Scholar 

  26. Genini D, Sheeter D, Rought S, et al: HIV induces lymphocyte apoptosis by a p53-initiated, mitochondrial-mediated mechanism. FASEB J 2001;15:5–6.

    PubMed  CAS  Google Scholar 

  27. Lum JJ, Cohen OJ, Niez Z, et al: Vpr R77Q is associated with long-term nonprogressive HIV infection and impaired induction of apoptosis. J Clin Invest 2003; 111:1547–1554.

    Article  PubMed  CAS  Google Scholar 

  28. Valentino KL, Gutierrez M, Sanchez R, Winship MJ, Shapiro DA: First clinical trial of a novel caspase inhibitor: anti-apoptotic caspase inhibitor, IDN-6556, improves liver enzymes. Int J Clin Pharmacol Ther 2003;41:441–449.

    PubMed  CAS  Google Scholar 

  29. Champagne P, Ogg GS, King AS, et al: Skewed maturation of memory HIV-specific CD8 T lymphocytes. Nature 2001;410:106–111.

    Article  PubMed  CAS  Google Scholar 

  30. Appay V, Dunbar PR, Callan M, et al: Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat Med 2002;8:379–385.

    Article  PubMed  CAS  Google Scholar 

  31. Draenert R, Tang Y, Verill C, et al; Vigorous HIV-1 specific CD8 T cell responses in late stage HIV infection. In 10th conference on retroviruses and opportunistic infections. Boston, MA, 2003.

  32. Appay V, Nixon DF, Donahoe SM, et al: HIV-specific CD8(+) T cells produce antiviral cytokines but are impaired in cytolytic function. J Exp Med 2000; 192:63–75.

    Article  PubMed  CAS  Google Scholar 

  33. Yue FY, Kovacs CM, Dimayuga RC, Parks P, Ostrowski MA: HIV-1-specific memory CD4(+) T cells are phenotypically less mature than cytomegalovirus-specific memory CD4(+) T cells. J Immunol 2004;172:2476–2486.

    PubMed  CAS  Google Scholar 

  34. Amyes E, Hatton C, Montamat-Sicotte D, et al: Characterization of the CD4+ T cell response to Epstein-Barr virus during primary and persistent infection. J Exp Med 2003;198:903–911.

    Article  PubMed  CAS  Google Scholar 

  35. Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ: T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 1998;93:480–483.

    Article  CAS  Google Scholar 

  36. Ridge JP, Di Rosa F, Matzinger P: A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 1998;393:474–478.

    Article  PubMed  CAS  Google Scholar 

  37. Hermans IF, Ritchie DS, Daish A, Yang J, Kehry MR, Ronchese F: Impaired ability of MHC class II-/- dendritic cells to provide tumor protection is rescued by CD40 ligation. J Immunol 1999;163:77–81.

    PubMed  CAS  Google Scholar 

  38. Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Health WR: Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 1998;393:478–480.

    Article  PubMed  CAS  Google Scholar 

  39. Grewal IS, Borrow P, Pamer EG, Oldstone MB, Flavell RA: The CD40-CD154 system in anti-infective host defense. Curr Opin Immunol 1997;9:491–497.

    Article  PubMed  CAS  Google Scholar 

  40. Caux C, Massacrier C, Vanbervliet B, et al: Activation of human dendritic cells through CD40 cross-linking. J Exp Med 1994;180:1263–1272.

    Article  PubMed  CAS  Google Scholar 

  41. Mackey MF, Gunn JR, Maliszewsky C, Kikutani H, Noelle RJ, Barth RJ, Jr: Dendritic cells require maturation via CD40 to generate protective antitumor immunity. J Immunol 1998;161:2094–2098.

    PubMed  CAS  Google Scholar 

  42. Cella M, Scheidegger D, Palmer-Lehmann K, Lane P, Lanzavecchia A, Alber G: Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med 1996;184:747–752.

    Article  PubMed  CAS  Google Scholar 

  43. Guo Y, Wu Y, Shinde S, Sy MS, Aruffo A, Liu Y: Identification of a costimulatory molecule rapidly induced by CD40L as CD44H. J Exp Med 1996;184:955–961.

    Article  PubMed  CAS  Google Scholar 

  44. Koch F, Stanzl U, Jennewein P, et al: High level IL-12 production by murine dendritic cells: upregulation via MHC class II and CD40 molecules and downregulation by IL-4 and IL-10. J Exp Med 1996;184:741–746.

    Article  PubMed  CAS  Google Scholar 

  45. Kennedy MK, Picha KS, Fanslow WC, et al: CD40/CD40 ligand interactions are required for T cell-dependent production of interleukin-12 by mouse macrophages. Eur J Immunol 1996;26:370–378.

    Article  PubMed  CAS  Google Scholar 

  46. Yang Y, Wilson JM: CD40 ligand-dependent T cell activation: requirement of B7-CD28 signaling through CD40. Science 1996;273:1862–1864.

    Article  PubMed  CAS  Google Scholar 

  47. Ostrowski MA, Justement SJ, Ehler L, et al: The role of CD4(+) T cell help and CD40 ligand in the In vitro expansion of HIV-1-specific memory cytotoxic CD8(+) T cell responses. J Immunol 2000;165:6133–6141.

    PubMed  CAS  Google Scholar 

  48. Kuniyoshi JS, Kuniyoshi CJ, Lim AM, et al: Dendritic cell secretion of IL-15 is induced by recombinant huCD40LT and augments the stimulation of antigen-specific cytolytic T cells. Cell Immunol 1999;193:48–58.

    Article  PubMed  CAS  Google Scholar 

  49. Diehl L, den Boer AT, Schoenberger, SP, et al: CD40 activation in vivo overcomes peptide-induced peripheral cytotoxic T-lymphocyte tolerance and augments antitumor vaccine efficacy. Nat Med 1999;5:774–779.

    Article  PubMed  CAS  Google Scholar 

  50. French RR, Chan HT, Tutt AL, Glennie MJ: CD40 antibody evokes a cytotoxic T-cell response that eradicates lymphoma and bypasses T-cell help. Nat Med 1999;5:548–553.

    Article  PubMed  CAS  Google Scholar 

  51. Sotomayor EM, Borrello I, Tubb E, et al: Conversion of tumor-specific CD4+ T-cell tolerance to T-cell priming through in vivo ligation of CD40. Nat Med 1999;5:780–787.

    Article  PubMed  CAS  Google Scholar 

  52. Bachmann MF, Wong BR, Josien R, Steinman R, Oxenius A, Choi Y: TRANCE, a tumor necrosis factor family member critical for CD40 ligand-independent T helper cell activation. J Exp Med 1999;189:1025–1031.

    Article  PubMed  CAS  Google Scholar 

  53. Green EA, Flavell RA: TRANCE-RANK, a new signal pathway involved in lymphocyte development and T cell activation. J Exp Med 1999;189:1017–1020.

    Article  PubMed  CAS  Google Scholar 

  54. Wong BR, Josien R, Lee SY, et al. TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor. J Exp Med 1997;186:2075–2080.

    Article  PubMed  CAS  Google Scholar 

  55. Josien R, Wong BR, Li HL, Steinman RM, Choi Y: TRANCE, a TNF family member, is differentially expressed on T cell subsets and induces cytokine production in dendritic cells. J Immunol 1999;162:2562–2568.

    PubMed  CAS  Google Scholar 

  56. Anderson DM, Maraskovsky E, Billingsley WL, et al: A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 1997;390:175–179.

    Article  PubMed  CAS  Google Scholar 

  57. Josien BR, Li HL, Ingulli E, et al: TRANCE, a tumor necrosis factor family member, enhances the longevity and adjuvant properties of dendritic cells in vivo. J Exp Med 2000;191:495–502.

    Article  PubMed  CAS  Google Scholar 

  58. Zheng M, Ramsay AJ, Robichaux MB, et al: CD4 T cell-independent DNA vaccination against opportunistic infections. J Clin Invest 2005;115:3536–3544.

    Article  PubMed  CAS  Google Scholar 

  59. Yu Q, Gu JX, Kovacs C, Freedman J, Thomas EK, Ostrowski MA: Cooperation of TNF family members CD40 ligand, RANKL, and TNFα in the activation of dendritic cells and the expansion of viral specific CD8+ T cell memory responses in HIV-1-infected and-uninfected individuals. Immunol 2003;170:1797–1805.

    CAS  Google Scholar 

  60. Gramaglia I, Weinberg AD, Lemon M, Croft M: Ox-40 ligand: a potent costimulatory molecule for sustaining primary CD4 T cell responses. J Immunol 1998;161: 6510–6517.

    PubMed  CAS  Google Scholar 

  61. Ohshima Y, Yang LP, Uchiyama T, et al: OX40 costimulation enhances interleukin-4 (IL-4) expression at priming and promotes the differentiation of naive human CD4(+) T cells into high IL-4-producing effectors. Blood 1998;92:3338–3345.

    PubMed  CAS  Google Scholar 

  62. Ohshima Y, Tanaka Y, Tozawa H, Takahashi Y, Maliszewski C, Delespess G: Expression and function of OX40 ligand on human dendritic cells. J Immunol 1997;159:3838–3848.

    PubMed  CAS  Google Scholar 

  63. Chen AI, McAdam AJ, Buhlmann JE, et al: Ox40-ligand has a critical costimulatory role in dendritic cell: T cell interactions. Immunity 1999;11:689–698.

    Article  PubMed  CAS  Google Scholar 

  64. Kopf M, Ruedl C, Schmitz N, et al: OX40-deficient mice are defective in Th cell proliferation but are competent in generating B cell and CTL Responses after virus infection. Immunity 1999;11:699–708.

    Article  PubMed  CAS  Google Scholar 

  65. Weinberg AD, Rivera MM, Prell R, et al: Engagement of the OX-40 receptor in vivo enhances antitumor immunity. J Immunol 2000;164:2160–2169.

    PubMed  CAS  Google Scholar 

  66. McHugh RS, Whitters MJ, Piccirillo CA, et al: CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 2002;16:311–323.

    Article  PubMed  CAS  Google Scholar 

  67. Jonuleit H, Schmitt E, Stassen M, Tuettenberg A, Knop J, Enk AH: Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood. J Exp Med 2001;193:1285–294.

    Article  PubMed  CAS  Google Scholar 

  68. Dieckmann D, Plottner H, Berchtold S, Berger T, Schuler G: Ex vivo isolation and characterization of CD4(+)CD25(+) T cells with regulatory properties from human blood. J Exp Med 2001;193:1303–1310.

    Article  PubMed  CAS  Google Scholar 

  69. Kinter AL, Hennessey M, Bell A, et al. CD25(+)CD4(+) regulatory T cells from the peripheral blood of asymptomatic HIV-infected individuals regulate CD4(+) and CD8(+) HIV-specific T cell immune responses in vitro and are associated with favorable clinical markers of disease status. J Exp Med 2004;200:331–343.

    Article  PubMed  CAS  Google Scholar 

  70. Yu Q, Yue FY, Gu XX, Schwartz H, Kovacs CM, Ostrowski MA: OX40 ligation of CD4T cells enhances virus-specific CD8 T cell memory responses independently of IL-2 and CD4 T regulatory cell inhibition. J Immunol 2006;176:2486–2495.

    PubMed  CAS  Google Scholar 

  71. Serghides L, Bukczynski J, Wen T, et al: Evaluation of OX40 ligand as a costimulator of human antiviral memory CD8 T cell responses: comparison with B7.1 and 4-1BBI. J Immunol 2005;175:6368–6377.

    PubMed  CAS  Google Scholar 

  72. Croft M: Co-stimulatory members of the TNFR family: keys to effective T-cell immunity? Nat Rev Immunol 2003;3:609–620.

    Article  PubMed  CAS  Google Scholar 

  73. Watts TH: TNF/TNFR family members in costimulation of T cell responses. Annu Rev Immunol 2005;23:23–68.

    Article  PubMed  CAS  Google Scholar 

  74. Yu Q, Kovacs C, Yue FY, Ostrowski MA. The role of the p38 mitogen-activated protein kinase, extracellular signal-regulated kinase, and phosphoinositide-3-OH kinase signal transduction pathways in CD40 ligand-induced dendritic cell activation and expansion of virus-specific CD8+ T cell memory responses. J Immunol 2004;172:6047–6056.

    PubMed  CAS  Google Scholar 

  75. Stone G, Barzee S, Snarsky V, et al: Multimeric soluble CD40L and GITR L as adjuvants for HIV DNA vaccines. J Virol 2006; 80:in press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario A. Ostrowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostrowski, M.A., Yu, Q., Yue, F.Y. et al. Why can't the immune system control HIV-1? defining HIV-1-specific CD4+ T cell immunity in order to develop strategies to enhance viral immunity. Immunol Res 35, 89–101 (2006). https://doi.org/10.1385/IR:35:1:89

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:35:1:89

Key Words

Navigation