Skip to main content
Log in

Prolactin-releasing peptide and its homolog RFRP-1 act in hypothalamus but not in anterior pituitary gland to stimulate stress hormone secretion

  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

The RF-amide peptides (RFRPs), including prolactin (PRL)-releasing peptide-31 (PrRP-31) and RFRP-1, have been reported to stimulate stress hormone secretion by either direct pituitary or indirect hypothalamic actions. We examined the possible direct effects of these peptides on PRL and adrenocorticotropin (adrenocorticotropic hormone [ACTH]) release from dispersed anterior pituitary cells in culture and on PRL and ACTH secretion following intracerebroventricular (icv) administration in vivo. Neither peptide significantly altered PRL or ACTH release from cultured pituitary cells (male rat donors). Central administration of 1.0 and 3.0 nmol of PrRP-31, but only the higher dose of RFRP-1, significantly elevated serum corticosterone levels in conscious male rats. The effect of PrRP-31 was not blocked by pretreatment (iv) with the corticotropin-releasing hormone (CRH) antagonist, α-helical CRH 9–41; however, pretreatment of the animals (iv) with an antiserum to CRH significantly lowered the hypothalamic-pituitary-adrenal axis response to central administration of PrRP-31. On the other hand, the release of PRL was significantly elevated by 3.0 nmol of RFRP-1, but not PrRP-31, in similarly treated, conscious male rats. Pretreatment with the catecholamine synthesis inhibitor, α-methyl-para-tyrosine, prevented the stimulation of PRL secretion observed following central administration of RFRP-1. RFRP-1 similarly did not alter PRL secretion in rats pretreated with the dopamine, D2 receptor blocker, domperidone. These results suggest that the RF-amide peptides are not true neuroendocrine regulators of stress hormone secretion in the rat but, instead, act centrally to alter the release of neuroendocrine factors that do act in the pituitary gland to control PRL and ACTH release. In the case of RFRP-1, stimulation of PRL secretion is potentially owing to an action of the peptide to inhibit dopamine release into the median eminence. The corticosterone secretion observed following central administration of PrRP-31 does not appear, based on our current results, to be solely owing to an action of the peptide on CRH-producing neurons but, instead, may be a result of the ability of PrRP-31 to increase as well the exposure of the corticotrophs in vivo to other ACTH secretagogues, such as oxytocin or vasopressin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hinuma S., Habata, Y., Fujii, R., et al. (1998). Nature 393, 272–276.

    Article  PubMed  CAS  Google Scholar 

  2. Samson, W. K., Resch, Z. T., Murphy, T. C., and Chang, J.-K. (1998). Endocrine 9, 289–291.

    Article  PubMed  CAS  Google Scholar 

  3. Maruyama, M., Matsumoto, H., Fujiwara, K., et al. (1999). Endocrinology 140, 2326–2333.

    Article  PubMed  CAS  Google Scholar 

  4. Yamakawa, K., Kudo, K., Kanba, S., and Arita, J. (1999). Neurosci. Lett. 267, 113–116.

    Article  PubMed  CAS  Google Scholar 

  5. Matsumoto, H., Noguchi, J., Horikoshi, Y., et al. (1999). Biochem. Biophys. Res. Commun. 259, 321–324.

    Article  PubMed  CAS  Google Scholar 

  6. Jarry, H., Heuer, H., Schomburg, L., and Bauer, K. (2000). Neuroendocrinology 71, 262–267.

    Article  PubMed  CAS  Google Scholar 

  7. Roland, B. L., Sutton, S., Wilson, S. J., et al. (1999). Endocrinology 140, 5736–5745.

    Article  PubMed  CAS  Google Scholar 

  8. Minami, S., Nakata, T., Tokita, R., Onodera, H., and Imaki, J. (1999). Neurosci. Lett. 266, 73–75.

    Article  PubMed  CAS  Google Scholar 

  9. Samson, W. K., Resch, Z. T., and Murphy, T. C. (2000). Brain Res. 858, 19–25.

    Article  PubMed  CAS  Google Scholar 

  10. Himuna, S., Shintani, Y., Fukusumi, S., et al. (2000). Nat. Cell Biol. 2, 703–708.

    Article  CAS  Google Scholar 

  11. Samson, W. K., Bianchi, R., and Mogg, R. (1988). Neuroendocrinology 47, 268–271.

    PubMed  CAS  Google Scholar 

  12. Samson, W. K., Taylor, M. M., Folwell, M., and Ferguson, A. V. (2002). Regul. Pept. 104, 97–103.

    Article  PubMed  CAS  Google Scholar 

  13. Ono, N., Samson, W. K., McDonald, J. K., Lumpkin, M. D., Bedran de Castro, J. C., and McCann, S. M. (1985). Proc. Natl. Acad. Sci. USA 82, 7787–7790.

    Article  PubMed  CAS  Google Scholar 

  14. Fuji, R., Fukusumi, S., Hosoya, M., et al. (1999). Regul. Pept. 83, 1–10.

    Article  Google Scholar 

  15. Iijima, N., Kataoka, Y., Kakihara, K., et al. (1999). Neuroreport 10, 1713–1716.

    Article  PubMed  CAS  Google Scholar 

  16. Samson, W. K. and Taylor, M. M. (2001). Am. J. Physiol. 281, R1140-R1145.

    CAS  Google Scholar 

  17. Samson, W. K., Murphy, T. C., and Schell, D. A. (1995). Endocrinology 136, 2349–2352.

    Article  PubMed  CAS  Google Scholar 

  18. Matsumoto, H., Maryuma, M., Noguchi, J., et al. (2000). Neurosci. Lett. 285, 234–238.

    Article  PubMed  CAS  Google Scholar 

  19. Seal, L. J., Small, C. J., Dhillo, W. S., Kennedy, A. R., Ghatei, M. A., and Bloom, S. R. (2002). Neuroendocrinology 76, 70–78.

    Article  PubMed  CAS  Google Scholar 

  20. Vale, W., Vaughn, J., Smith, M., Yamamoto, G., Rivier, J., and Rivier, C. (1983). Endocrinology 113, 1121–1131.

    PubMed  CAS  Google Scholar 

  21. Maryuma, M., Matsumoto, H., Fujiwara, K., et al. (1999). Neurosci. Lett. 276, 193–196.

    Article  Google Scholar 

  22. Samson, W. K., Bianchi, R., Mogg, R. J., Rivier, J., Vale, W., and Melin, P. (1989). Endocrinology 124, 812–819.

    PubMed  CAS  Google Scholar 

  23. Samson, W. K., Martin, L., Mogg, R., and Fulton, R. J. (1990). Endocrinology 126, 1610–1617.

    PubMed  CAS  Google Scholar 

  24. Harms, P. G. and Ojeda, S. R. (1974). J. Appl. Physiol. 36, 391,392.

    PubMed  CAS  Google Scholar 

  25. Samson, W. K., Lumpkin, M. D., and McCann, S. M. (1986). Endocrinology 119, 554–560.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willis K. Samson PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samson, W.K., Keown, C., Samson, C.K. et al. Prolactin-releasing peptide and its homolog RFRP-1 act in hypothalamus but not in anterior pituitary gland to stimulate stress hormone secretion. Endocr 20, 59–66 (2003). https://doi.org/10.1385/ENDO:20:1-2:59

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ENDO:20:1-2:59

Key Words

Navigation