Skip to main content
Log in

Retinoid-related receptor (ROR) α mRNA expression is altered in the brain of male mice lacking all ligand-binding thyroid hormone receptor (TR) isoforms

  • Original Articles
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

In the vertebrate brain, the thalamus serves as a relay and integration station for diverse neuronal information en route from the periphery to the cortex. Deficiency of TH during development results in severe cerebral abnormalities similar to those seen in the mouse when the retinoic acid receptor (ROR)α gene is disrupted. To investigate the effect of the thyroid hormone receptors (TRs) on RORα gene expression, we used intact male mice, in which the genes encoding the α and β TRs have been deleted. In situ hybridization for RORα mRNA revealed that this gene is expressed in specific areas of the brain including the thalamus, pons, cerebellum, cortex, and hippocampus. Our quantitative data showed differences in RORα mRNA expression in different subthalamic nuclei between wild-type and knockout mice. For example, the centromedial nucleus of the thalamus, which plays a role in mediating nociceptive and visceral information from the brainstem to the basal ganglia and cortical regions, has less expression of RORα mRNA in the knockout mice (−37%) compared to the wild-type controls. Also, in the dorsal geniculate (+72%) and lateral posterior nuclei (+58%) we found more RORα mRNA in dKO as compared to dWT animals. Such differences in RORα mRNA expression may play a role in the behavioral alterations resulting from congenital hypothyroidism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oppenheimer, J. H., Schwartz, H. L., and Strait, K. A. (1995). In: Molecular endocrinology: basic concepts and clincal correlations. Weintraub, B. (ed.). Raven Press: New York.

    Google Scholar 

  2. Lazar, M. (1993). Endocrine Rev. 14, 184–193.

    Article  CAS  Google Scholar 

  3. Zhang, J. and Lazar, M. A. (2000). Annu. Rev. Physiol. 62, 439–466.

    Article  PubMed  CAS  Google Scholar 

  4. Sap, J., Munoz, A., Schmitt, J., Stunnenberg, H., and Vennstrom, B. (1989). Nature 340, 242–244.

    Article  PubMed  CAS  Google Scholar 

  5. Evans, R. M. (1988). Science 240, 889–895.

    Article  PubMed  CAS  Google Scholar 

  6. Mangelsdorf, D. J., Thummel, C., Beato, M., et al. (1995). Cell 83, 835–840.

    Article  PubMed  CAS  Google Scholar 

  7. Damm, K., Thompson, C. C., and Evans, R. M. (1989). Nature 339, 593–597.

    Article  PubMed  CAS  Google Scholar 

  8. Feng, X., Jiang, Y., Meltzer, P., and Yen, P. M. (2000). Mol. Endocrinol. 14, 947–955.

    Article  PubMed  CAS  Google Scholar 

  9. Flores-Morales, A., Gullberg, H., Fernandez, L., et al. (2002). Mol. Endocrinol. 16, 1257–1268.

    Article  PubMed  CAS  Google Scholar 

  10. Chin, W. W. (1991). In: Nuclear hormone receptors. Parker, M. (ed.). Academic Press: New York.

    Google Scholar 

  11. Harvey, C. B. and Williams, G. R. (2002). Thyroid 12, 441–446.

    Article  PubMed  CAS  Google Scholar 

  12. Delange, F. M. and Ermans, A. M. (1979). In: The thyroid: physiology and treatment of disease. Hershman, J. M. and Bray, G. A. (eds.). Pergamon Press: New York.

    Google Scholar 

  13. Bernal, J., Guadano-Ferraz, A., and Morte, B. (2003). Thyroid 13, 1005–1012.

    Article  PubMed  CAS  Google Scholar 

  14. Morreale de Escobar, G., Obregon, M. J., and Escobar del Rey, F. (2004). Eur. J. Endocrinol. 151(Suppl 3), U25-U37.

    Article  PubMed  CAS  Google Scholar 

  15. Forrest, D. (2004). Endocrinology 145, 4034–4036.

    Article  PubMed  CAS  Google Scholar 

  16. Anderson, G. W., Schoonover, C. M., and Jones, S. A. (2003). Thyroid 13, 1039–1056.

    Article  PubMed  CAS  Google Scholar 

  17. Konig, S. and Moura Neto, V. (2002). Cell Mol. Neurobiol. 22, 517–544.

    Article  PubMed  Google Scholar 

  18. Morte, B., Manzano, J., Scanlan, T. S., Vennstrom, B., and Bernal, J. (2004). Endocrinology 145, 1386–1391.

    Article  PubMed  CAS  Google Scholar 

  19. Morte, B., Manzano, J., Scanlan, T., Vennstrom, B., and Bernal, J. (2002). Proc. Natl. Acad. Sci. USA 99, 3985–3989.

    Article  PubMed  CAS  Google Scholar 

  20. Heuer, H. and Mason, C. A. (2003). J. Neurosci. 23, 10604–10612.

    PubMed  CAS  Google Scholar 

  21. Koibuchi, N. and Chin, W. W. (2000). Trends Endocrinol. Metab. 11, 123–128.

    Article  PubMed  CAS  Google Scholar 

  22. Legrand, J. and Bout, M. C. (1970). C. R. Acad. Sci. Hebd. Seances. Acad. Sci. D. 271, 1199–1202.

    PubMed  CAS  Google Scholar 

  23. Sidman, R. L., Lane, P. W., and Dickie, M. M. (1962). Science 137, 610–612.

    Article  PubMed  CAS  Google Scholar 

  24. Clos, J., Crepel, F., Legrand, C., Legrand, J., Rabie, A., and Vigouroux, E. (1974). Gen. Comp. Endocrinol. 23, 178–192.

    Article  PubMed  CAS  Google Scholar 

  25. Crepel, F. (1974). Exp. Brain Res. 20, 403–420.

    Article  PubMed  CAS  Google Scholar 

  26. Crepel, F. (1975). Brain Res. 85, 157–160.

    Article  PubMed  CAS  Google Scholar 

  27. Nicholson, J. L. and Altman, J. (1972). Science 176,

  28. Nicholson, J. L. and Altman, J. (1972). Brain Res. 44, 13–23.

    Article  PubMed  CAS  Google Scholar 

  29. Rabie, A., Favre, C., Clavel, M. C., and Legrand, J. (1979). Brain Res. 161, 469–479.

    Article  PubMed  CAS  Google Scholar 

  30. Herrup, K. (1983). Dev. Brain Res. 11, 267–274.

    Article  Google Scholar 

  31. Sotelo, C. and Changeux, J.-P. (1974). Brain Res. 67, 519–526.

    Article  PubMed  CAS  Google Scholar 

  32. Hamilton, B. A., Frankel, W. N., Kerrebrock, A. W., et al. (1996). Nature 379, 736–739.

    Article  PubMed  CAS  Google Scholar 

  33. Dussault, I., Fawcett, D., Matthyssen, A., Bader, J. A., and Giguere, V. (1998). Mech. Dev. 70, 147–153.

    Article  PubMed  CAS  Google Scholar 

  34. Giguere, V., Tini, M., Flock, G., Ong, E., Evans, R. M., and Otulakowski, G. G. (1994). Genes Dev. 8, 538–553.

    Article  PubMed  CAS  Google Scholar 

  35. Matsui, T., Sashihara, S., Oh, Y., and Waxman, S. G. (1995). Brain Res. Mol. Brain Res. 33, 217–226.

    Article  PubMed  CAS  Google Scholar 

  36. Jetten, A. M., Kurebayashi, S., and Ueda, E. (2001). Prog. Nucleic Acid Res. Mol. Biol. 69, 205–247.

    PubMed  CAS  Google Scholar 

  37. Sashihara, S., Felts, P. A., Waxman, S. G., and Matsui, T. (1996). Brain Res. Mol. Brain Res. 42, 109–117.

    Article  PubMed  CAS  Google Scholar 

  38. Matysiak-Scholze, U. and Nehls, M. (1997). Genomics 43, 78–84.

    Article  PubMed  CAS  Google Scholar 

  39. Matsui, T. (1997). Genes Cells 2, 263–272.

    Article  PubMed  CAS  Google Scholar 

  40. Oppenheimer, J. H. and Schwartz, H. L. (1997). Endocr. Rev. 18, 462–475.

    Article  PubMed  CAS  Google Scholar 

  41. Zou, L., Hagen, S. G., Strait, K. A., and Oppenheimer, J. H. (1994). J. Biol. Chem. 269, 13346–13352.

    PubMed  CAS  Google Scholar 

  42. Chu, K. and Zingg, H. H. (1999). J. Mol. Endocrinol. 23, 337–346.

    Article  PubMed  CAS  Google Scholar 

  43. Matsui, T. (1996). Biochem. Biophys. Res. Commun. 220, 405–410.

    Article  PubMed  CAS  Google Scholar 

  44. Koibuchi, N and Chin, W. W. (1998). Endocrinology 139, 2335–2341.

    Article  PubMed  CAS  Google Scholar 

  45. Kandel, E. R., Schwartz, J. H., and Jessel, T. M. (1991). Principles of neural science. Elsevier: New York.

    Google Scholar 

  46. Bauer, M. S. and Whybrow, P. C. (1988). Integr. Psychiatry 6, 75–100.

    Google Scholar 

  47. Arque, J. M., Segura, R., and Torrubia, R. (1987). Neuropsychobiology 18, 127–133.

    PubMed  CAS  Google Scholar 

  48. Balada, F., Torrubia, R., and Arque, J. M. (1992). Neuropsychobiology 25, 208–213.

    Article  PubMed  CAS  Google Scholar 

  49. Koibuchi, N., Yamaoka, S., and Chin, W. W. (2001). Thyroid 11, 205–210.

    Article  PubMed  CAS  Google Scholar 

  50. Barradas, P. C., Vieira, R. S., and De Freitas, M. S. (2001). J. Neurosci. Res. 66, 254–261.

    Article  PubMed  CAS  Google Scholar 

  51. Ng, L., Hurley, J. B., Dierks, B., et al. (2001). Nat. Genet. 27, 94–98.

    PubMed  CAS  Google Scholar 

  52. Göthe, S., Wang, Z., Ng, L., et al. (1999). Genes Develop. 13, 1329–1341.

    PubMed  Google Scholar 

  53. Forrest, D., Erway, L. C., Ng, L., Altschuler, R., and Curran, T. (1996). Nat. Genet. 13, 354–357.

    Article  PubMed  CAS  Google Scholar 

  54. Kia, H. K., Krebs, C. J., Koibuchi, N., Chin, W. W., and Pfaff, D. W. (2001). J. Comp. Neurol. 437, 286–295.

    Article  PubMed  CAS  Google Scholar 

  55. Mize, A. L. and Alper, R. H. (2000). Brain Res. 859, 326–333.

    Article  PubMed  CAS  Google Scholar 

  56. Franklin, K. B. J. and Paxinos, G. (1997). The mouse brain in stereotaxic coordinates. Academic Press: San Diego, CA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nandini Vasudevan.

Additional information

The first three authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasudevan, N., Kia, H.K., Hadjimarkou, M. et al. Retinoid-related receptor (ROR) α mRNA expression is altered in the brain of male mice lacking all ligand-binding thyroid hormone receptor (TR) isoforms. Endocr 26, 25–32 (2005). https://doi.org/10.1385/ENDO:26:1:025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ENDO:26:1:025

Key Words

Navigation